
Contents lists available at ScienceDirect

Ultramicroscopy

journal homepage: www.elsevier.com/locate/ultramic

A general and robust analytical method for interface normal determination
in TEM
Rui-Xun Xiea, Melvyn Larranagab, Frédéric Mompioub, Nicolas Combeb, Wen-Zheng Zhanga,⁎

a Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
b CEMES-CNRS, Université de Toulouse, 29 rue J. Marvig, Toulouse 31055, France

A R T I C L E I N F O

Keywords:
Transmission electron microscopy (TEM)
Trace analysis
Interface
Crystallography

A B S T R A C T

This paper presents a new analytical method to determine interface normals from a series of bright/dark field
images taken from arbitrary orientations. This approach, based on a general geometrical model of interface
projection, provides a generalized formulation of existing methods. It can treat an excessive number of inputs,
i.e. orientation conditions. Given 6 or more sets of inputs, even with considerable experimental errors, we prove
that this method is still very likely to yield results with satisfactory accuracy. The robustness of the method can
thus allow its implementation in problems dealing with a large amount of data. We show that this method can
also be applied to determine 1D features or to check the planarity of microstructural features.

1. Introduction

Transmission electron microscopy (TEM) is a powerful tool to ex-
amine a variety of defects in materials, including point defects (zero
dimension, 0D), dislocation lines (1D), interfaces (2D) and inclusions
(3D). Since TEM images are 2D projections of the 3D space, the geo-
metrical features of non-0D defects, e.g., their shapes, must be re-
constructed from their projections on the observation plane. The
identification of 3D inclusions, curved lines or curved planes is a
cumbersome work [1,2]. However, many 1D or 2D defects, e.g., inter-
facial dislocations or faceted interfaces, often have preferred orienta-
tions. They can be considered as straight lines or flat planes. Accurately
determining their crystallographic orientations is fundamental to un-
ravel the mechanism of associated microstructure evolution [3]. In this
context, the problem is restricted to the line direction or the interface
plane normal determination, using a technique called trace analysis
[4,5].

The concept and methods of trace analysis using TEM were clearly
introduced in the well-known book by Hirsch et al. [4]. A line feature is
always on the plane defined by its projection and the electron beam
direction. Therefore it can be determined if observed from two direc-
tions. However, the projection of a planar feature usually contains the
projection of two traces, the intersections of the interface with two foil
surfaces, separated by a certain width. An interface can be directly
determined at its edge-on condition, where the projection width is zero
and the interface normal lies in the viewing screen [4]. Since an edge-

on condition often carries non-negligible uncertainty, several mod-
ifications were later proposed to improve the accuracy, such as the
single edge-on method [5,6], the double edge-on method [7,8], and the
trace & edge-on method [9]. Despite their good accuracy, these
methods are not easy to use, as finding an exact edge-on condition is
usually time consuming or even impossible if it is out of the tilting
range of the sample holder.

An edge-on condition is not always necessary, if the interface con-
tains an additional sharp line feature, such as a straight dislocation line
[6,10,11] or an intersection with another plane [12], using the so-
called double-trace method. The orientations of both trace and the line
feature in the plane can be measured by the trace analysis method of 1D
features. Then one can obtain the interface normal by making a cross
product of the line and the trace direction. However, additional line
features are not always present, which limits the application of this
method.

When the condition for the double-trace method is not satisfied, the
projection width can be used to calculate interface normals at arbitrary
orientations. In this approach, the trace direction is assumed to lie on
the screen plane at zero tilt. The interface normal can be determined,
once the inclination angle between the foil surface and the interface is
determined. Traditionally, this was done by measuring the foil thick-
ness and the projection width of the interface at an orientation near to
zero tilt [5]. Since this method contains considerable uncertainty,
Zhang et al. [13] made an improvement by tilting the sample along the
trace direction. But it is usually difficult to ensure the tilting axis exactly
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parallel with the trace direction. Qiu and Zhang [14] solved this pro-
blem on a single tilt holder by taking the angle between the trace and
the tilting axis into consideration. In order to avoid ambiguous solu-
tions, this approach still needs to track the trend of the projection width
change during sample tilting. All these methods are based on the as-
sumption that the upper and lower foil surfaces are both perpendicular
to the electron beam direction at zero tilt. This may introduce sys-
tematic error when the foil has thickness variation or not flat.

Above methods are highly sensitive to experimental errors, since
they rely on limited information — usually one or two sets of inputs
(beam and projected trace directions, projection width). Particularly,
the error could be greatly amplified by the cross product operation in
double trace and double edge-on methods [9]. To improve the relia-
bility, one may use excessive experimental data to calculate several
solutions of the interface normal. The scattering of results can be
plotted in a pole figure [9,14], but the selection of the final result and
the estimation of its uncertainty are largely based on the operator’s
experience.

In order to improve the accuracy of interface normal determination
and simplify the TEM operation, we present here a close-form algorithm
to optimize the result with multiple sets of inputs from arbitrary or-
ientations. In this method, there is no specific requirements on the
beam direction, nor conditions on the interface and the foil.

In Section 2, we will describe the methodology used to compute the
interface normal. Section 3 will present experimental details, followed
by Section 4 illustrating the applications of the present method. The
results and method will be further discussed in Section 5. The accuracy
of the results will be addressed by an error analysis, and the method
will be compared with other methods proposed in the literature. A
generalization of our approach will be proposed at the end.

2. Geometrical model of interface projection

The approach presented below is a purely geometrical analysis of
the orthogonal projection of planar features on the observation screen,
without any requirement on the beam direction (projection direction)
or the foil surface. It is based on the measurement of the interface width
and apparent trace direction from different beam directions. The sym-
bols used in the derivation and their definitions are listed in Table 1.1

A flat interface has two traces, the intersections with upper and
lower foil surfaces. Firstly, let us assume the two foil surfaces to be
parallel planes, resulting in two parallel traces separated by a certain
width d. This case is shown in Fig. 1a, where the interface is enclosed by
the red parallelogram ABCD. Line DC and AB are upper and lower traces
of the interface. The blue parallelogram EFGH is the projected interface
on the screen. Areas of these parallelograms, =S d AB| |ABCD and

=S w EF| |,EFGH are related by =S S cos ,EFGH ABCD where ψ is the angle
between reversed electron beam direction be and interface normal n.
Since |EF| is the projection of |AB|, they are related by =EF AB| | | | cos ,
where τ is the angle between trace t and its projection tp.

When the foil is bent or has a wedge shape, the assumption of
parallel foil surfaces is no longer valid. Because of this, trace AB and
trace DC are not parallel, and ABCD in Fig. 1a is no longer a paralle-
logram (Fig. 1b). However, if a point on the interface can be tracked, it
is still possible to resolve the relationship between d and w. As shown in
Fig. 1b, by tracking point K on the interface ABCD, one can redefine d as
the distance between K and the trace AB, while the distance between
the projected point M and projected trace EF is measured as w2. Each
time measuring w, the height of triangle EFM, it is crucial to make sure

that point M at different tilts is the projection of the same point K. The
area of interface triangle =S d AB| |/2ABK and that of projection triangle

=S w EF| |/2EFM are still related by =S S cosEFM ABK . The relationship of
=EF AB| | | | cos remains valid.

Therefore, no matter whether two foil surfaces are parallel or not,
the interface projection width w is always given by

=w d cos
cos (1)

Or alternatively using dot product:

= n b
b t

w d| · |
1 ( · )

e

e
2 (2)

In Eq. (2), w and be can be measured, while dn and t are unknown.
Vector t can be determined from its measured projections tp’s at

different be’s, using:
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When Eq. (3) is solved by using the cross product
= × × ×t b t b t( ) ( )e p e p1 1 2 2 . When the number of input sets m ≥ 3, it is

an overdetermined homogeneous linear equation, and can be solved by
the least square method (LSM, see Appendix A).

The determination of t allows to compute the non-linear part
b t1 ( · )e

2 in Eq. (2), turning Eq. (2) into a linear problem. However,
the width of interface projection, wi, is always positive, while n · bei

could be negative. Thus sgn(i), the sign of n · bei, is needed to remove
the absolute sign in Eq. (2). Using the fact that =n td · 0, a synthetic
formula incorporating the input measurements (wi, bei) can be derived:
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(4)

This equation can be solved by LSM, but the uncertainty of sgn(i)
would result in multiple solutions of dn. When =m 2, Eq. (4) is de-
termined and two different solutions are expected. It is impossible to
assess the actual one without additional information. When m ≥ 3,
Eq. (4) is overdetermined, and its residual error can be computed (see
Appendix A). The uncertainty of sgn(i) will give 2m 1 solutions of n. The
one with the minimum residual error is the best solution, because an
improper sgn(i) would result in significantly large residual error. The
contribution to the residual error from each set of input (wi, bei, tpi) can
be quantified by the respective element in the residual vector of Eq. (4)
(see Appendix A). The element with the maximum absolute value and
different sign from the others may indicate an abnormal input with
significantly large deviation. One may drop this input and recalculate
the result, which can reduce the residual error and improve the input

Table 1
Definition of symbols.

Symbol Definition

be Reversed electron beam direction, unit vector
n Interface normal, unit vector
s Foil surface normal, unit vector
t Trace direction, i.e., direction of the intersection between the interface

and the foil surface, unit vector = × ×t n s n s/| |
tp Projected direction of t
h Foil thickness
η Azimuth angle from xS axis of the screen to tp
d Real interface width, i.e., real distance between traces
w Projected interface width, i.e., distance between projected traces
i Input number, index, 1 ≤ i ≤ m
m Total number of inputs
sgn(i) A function that gives a value of ± 1 respect to the sign of n · bei

1 If not pointed out, all the vector symbols noted in bold and italics are
column vectors.

2 Note that w is NOT the projection of d, as w is always perpendicular to EF,
while the angle between EF and the projection of d will vary with the projection
direction.
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consistency. Thus, with at least 3 different sets of experimental data (wi,
bei, tpi), LSM will give the optimized solutions of t, d and n.

The accuracy of the interface normal, which is the deviation be-
tween the determined value and the true value, is an important con-
cern. Unfortunately, the true value of dn is usually unknown, and needs
to be estimated based on the internal consistency of inputs. The esti-
mation of the true value is a range with a certain confidence, i.e., a
confidence interval, which can represent the accuracy of the result. In
the present work, the 92% confidence interval of d and that of n are
calculated by the bootstrap method (see Appendix B) with Eq. (4).

A C++ implementation of the present algorithm can be found in
Supplementary Materials.

3. Experimental details

The present method was tested in two cases. In both cases, bright
field images were recorded at different orientation conditions in an FEI
Tecnai G2 20 TEM operated at 200 kV. Observations were performed
using a double tilt sample holder with coordinate conventions as shown
in Fig. 2: in the holder coordinate system, the x-axis is parallel to the
holder axis, and the y-axis is perpendicular to the x-axis and the beam
direction. In the following, the subscripts H, S, and F denote the indices
in holder (CSH), screen (CSS), and foil (CSF) coordinate system (CS),
respectively. In CSH, the sample is firstly tilted about the y axis by

angle β, and then tilted about the x axis by angle α.
The rotation angle from holder xH axis to the projection screen xS

axis is ϕ about =z zH S axis. This accounts for the rotation of the image
in the microscope column. At zero tilt, CSF and CSH are identical. When
the foil is tilted, CSF sticks to the foil, while CSH remains unchanged.
Hence, the beam direction be perpendicular to the screen and the di-
rection tp in the observation plane can be calculated using right-handed
rotation matrices Rx(θ), Ry(θ), and Rz(θ)(see Appendix D), as shown
below:

=
=
=
=

b [0, 0, 1]
[0, 0, 1]
Ry( )Rx( )[0, 0, 1]
[sin cos , sin , cos cos ]

e S
T

H
T

F
T

F
T (5)

=

=
=

t [cos , sin , 0]

Rz( )[cos , sin , 0]
Ry( )Rx( )Rz( )[cos , sin , 0]

p S
T

H
T

F
T (6)

where η is the azimuth angle between tp and the xS axis on the viewing
screen.

In the first experiment, a grain with two interfaces was investigated
in a duplex stainless steel Fe-24.9Cr-7.0Ni-3.1Mo (wt%) sample pre-
pared by the same procedure as reported in [15]. The images were
taken in conditions where = 90 .

In the second case, a grain boundary with non-parallel traces was
observed in an aluminum bicrystal with a misorientation close to a
coincident Σ41 12.68∘ < 0 0 1 > {5 4 0}. The sample was first ground
to a thickness of 50 microns using SiC grain disks and then electro-
polished to obtain electron transparency. The TEM foil was strained in-
situ at about 400 ∘C, as reported earlier in [16]. Plastic deformation
leads to a complex configuration of dislocations, resulting in significant
bending of the wedge foil and possible deviation from the original or-
ientation. Eq. (5) and Eq. (6) are still valid in this case, using here

= 157 for Eq. (6).

4. Application examples

4.1. Measuring two interfaces with a double-tilt holder

Fig. 3 shows a series of bright field (BF) images of a faceted auste-
nite grain (A) in a ferrite matrix (F) taken at different orientations. Two

Fig. 1. Geometrical description of interface projection. (a) Parallel traces case: The interface ABCD is projected onto the viewing screen, giving the projection EFGH.
(b) Non-parallel traces case: A traceable point K on the interface and a trace AB are projected to the viewing screen, giving the projection EFM.

Fig. 2. Illustration of the holder coordinate system when the sample is mounted
in a double-tilt holder.
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FCC/BCC facets, IntA and IntB, intersect and form a well defined
corner. In order to show the ability to determine multiple interfaces,
normals of these two facets were determined synchronously, using 6
sets of inputs among 8 different imaging conditions. The determination
was performed both in CSF and in the lattice coordinate system (CSL).
The former is more convenient to use, as it only needs tilt angles of the
sample holder, while the latter, which requires the analysis of Kikuchi
patterns, usually has better accuracy. The normal of IntA is determined
by Fig. 3a ~ f, and that of IntB by Fig. 3a ~ e and g. Fig. 3h, a near
edge-on condition of both IntA and IntB, was only used to check the
results.

The first step of this method is to determine t. In CSF, the be’s were
calculated using Eq. (5) with data in Table 2 and Fig. 3, while the tp’s of
IntA and IntB were calculated using Eq. (6) with their azimuth angle
with respect to the x axis of Fig. 3a ~ g. In CSL, be’s and tp’s were
defined in austenite using the Kikuchi patterns shown in Fig. 3, as listed
in Table 2. Hence t was determined by solving Eq. (3) in either co-
ordinate system.

The second step is to substitute be’s, t, and wi’s, into Eq. (4) to solve
dn. By enumerating all the possibilities of sgnA(i), and sgnB(i), dn and its

residual error in both conventions are solved by LSM. Among them, the
one with the minimum residual error was chosen as the final result,
whose sgn(i) is shown in Table 2. Then, the optimized results were
calculated, as shown in Table 3. The n’s determined in CSF were
transformed to lattice coordinates using the transformation matrix de-
termined from Fig. 3e2 (see Supplementary materials).

The t’s of IntA and IntB in CSF are almost in the xOy plane, in-
dicating that the foil was almost perpendicular to the beam direction at
zero tilt. For each interface, the real width (d) and the normal (n)
calculated from different coordinate systems show a good consistency.
This means CSF can be used instead of CSL to simplify the process while
reserving the accuracy. The determined orientation of n is verified by
tilting both interfaces to a near edge-on condition (Fig. 3h), where the
interface normal n can be determined by be × tp. Using the data of
Fig. 3h in Table 2, the normal of IntA is [0.562 0.592 0.579], and that
of IntB is [ 0.594 0.237 0.766]. These results deviate 0.38∘ and
1.78∘ from the results determined in CSF and deviate 1.34∘ and 1.12∘

from those in CSL. All the deviations are inside the confidence interval
of the n’s determined in Table 3. Hence, the present method is able to
accurately determine multiple interfaces, either in CSF or CSL.

Fig. 3. BF images of the interfaces and the corresponding Kikuchi patterns taken in austenite at different tilt angles. The α and β tilt angles are reported in the bottom
right. The projection widths and the azimuthal angle of both IntA and IntB interfaces are also indicated. Arrows in the Kikuchi patterns indicate the tp directions of
IntA and IntB.
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4.2. Measuring a grain boundary with non-parallel traces

Fig. 4 shows a series of BF images of an interface with non-parallel
traces in an Al bicrystal sample taken at different tilt angles. The
tracked point (pointed out by arrows) is defined by the position where
the lower trace (dotted line) starts to deviate. Fig. 4a ~ e are used to
solve the interface normal, while Fig. 4f is a near edge-on condition for
verification. The trace t of the interface in CSF deviates from the xOy
plane, confirming that the foil is bent. Through a similar process as the
previous example, the optimized result in CSF is calculated as following:

=t [0.883, 0.348, 0.315] ,F =n [ 0.473, 0.646, 0.600]F with a 92%
confidence interval of 2.4∘, and = ±d 224 12nm. Using the transfor-
mation matrix determined from a Kikuchi pattern (Fig. S1), the lattice

coordinates of the interface normal is =n [4.000 4.176 0.144] with
5.3∘ deviation from [4 5 0]. Noting that the 92% confidence interval
is 2.4∘, this deviation is considered to be the result of plastic deforma-
tion, rather than experimental errors. Using Eq. (5), the be at the near
edge-on condition in Fig. 4f is [0.278, 0.536, 0.797]F, which is almost
perpendicular to the interface normal with 0.1∘ deviation. This edge-on
condition confirms the result of n. Therefore, the present method re-
mains effective even for interfaces with non-parallel traces.

Table 2
Directions in lattice coordinates from the Kikuchi patterns in Fig. 3 and sgn(i) for solving Eq. (4).

Figure be IntA tp IntB tp sgnA(i) sgnB(i) wAi wBi α(∘) β(∘)

3 a [-0.811 0.485 0.327] [0.546 0.427 0.721]
[0.249 0.792 -0.558]

-1
+1

72
38

-37.86 27.22

3 b [-0.629 0.147 -0.763] [-0.250 0.891 0.378]
[0.772 0.239 -0.590]

+1
+1

33
175

35.23 25.19

3 c [-0.107 0.628 -0.771] [0.186 0.774 0.605]
[0.963 -0.128 -0.238]

+1
+1

130
108

30.53 -27.39

3 d [-0.281 0.951 0.130] [0.485 0.023 0.874]
[0.691 0.295 -0.660]

+1
-1

73
27

-29.90 -27.28

3 e [-0.465 0.341 -0.817] [-0.048 0.912 0.408]
[0.885 0.157 -0.438]

+1
+1

81
149

35.48 4.56

3 f [-0.677 0.684 0.272] [0.597 0.295 0.746]
[0.457 0.680 -0.574]

-1
not used

26
-

-37.32 6.65

3 g [-0.654 0.704 0.277] [0.612 0.277 0.741]
[0.469 0.665 -0.582]

not used
+1

-
0

-38.01 4.51

3 h [-0.592 0.776 0.219] [0.578 0.220 0.786]
[0.541 0.584 -0.601]

not used
not used

-
-

-34.12 -0.66

Table 3
Results of trace directions and interface normals.

Coordinates Interface t n Confidence
interval of n (∘)

d (nm)

foil IntA [0.453, 0.891, 0.003]F [ 0.863, 0.432, 0.262]F 1.0 166 ± 5
[0.567 0.588 0.577]

IntB [0.776, 0.630, 0.037]F [0.549, 0.670, 0.500]F 1.8 178 ± 6
[ 0.605 0.208 0.769]

lattice IntA [ 0.215 0.581 0.785] [0.581 0.585 0.567] 1.6 172 ± 8
IntB [ 0.722 0.253 0.644] [ 0.610 0.240 0.755] 1.6 182 ± 6

Fig. 4. BF images of the interface with non-parallel traces at different tilt angles. The α and β tilt angles are reported in the top left. The widths between the tracked
point (indicated by arrows) and the trace (blue dashed line), and the azimuth angles of the trace (blue dashed line) are also indicated. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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5. Discussion

5.1. Accuracy of n

The use of the method presented here raises three questions con-
cerning the accuracy of n: (i) is the true value of the interface normal
inside the bootstrap confidence interval; (ii) what is the main error
source of interface normal determination; (iii) what is the optimal
number of input datasets for an acceptable accuracy. To answer these
questions, statistical analysis was performed using simulated erroneous
data.

The simulated datasets were generated in CSF, using a 100-nm-thick
virtual sample with two parallel surfaces normal to z. As the pre-
requisite, the true value of the interface normal n must be known. Then,
the α and β angles were randomly chosen in ± 40∘ range, and the true
values of w and η were calculated. The dataset (α, β, η, w) was randomly
varied to simulate the experimental error. The α, β and η angles were
randomly varied in ± 1∘ range, while the projection widths in
± 5 nm range. With several erroneous datasets, the interface normal
was determined, and the deviation from the true value, which is called
bias for clarity, was calculated.

In the first analysis, the interface normal was randomly chosen and
determined with 6 sets of simulated data. This process was repeated for
10,000 times to calculate the coverage probability of the bootstrap
confidence interval (how often it contains the true value). In our tests,
the coverage probability ranges between 92.3% to 94.4%, which means
the confidence level of the interval is at least 92%. The true value could
be outside the confidence interval when the datasets (α, β, η, w) have
relatively large systematic error, as this problem cannot be figured out
from the consistency of the datasets.

In the second analysis, 4949 unit vectors evenly distributed on a
hemisphere were used as known interface normals. For each normal, 6
arbitrary conditions (α, β, η, w) were used to compute back an erro-
neous normal, and its bias. Because the bias is dependent on the or-
ientation conditions, it was averaged over 10,000 arbitrary condition
sets for each known normal.

The results are plotted in a pole figure in Fig. 5a. It shows an mm
symmetry due to the angular area covered by the sample tilt, limited by
the dashed lines in Fig. 5a. The average bias of interface normals ranges
between 0.65∘ and 1.35∘, but most of the value is due to the error on w
as shown in Fig. 5b, where the average bias is computed when varying
only w. The ring-like shape of bias in Fig. 5a can be understood by
inspecting how errors affect the value of cos ψ in Eq. (4). Using

= = n sh d dsin 1 ( · )2 (Fig. 1a) and Eq. (2), we can derive

= =n b b tw
h

cos · 1 ( · ) sine e
2

(7)

When the interface normal n moves from the center to the edge in
the pole figure, = n ssin 1 ( · )2 will increase, statistically making
the value of cos ψ more sensitive to the error of w. In other words,

largely inclined planes in the foil are less precisely determined, because
they statistically present orientation conditions where the projection
width is small. Meanwhile, the increase in ψ makes the direction of n
less sensitive to the error of cos ψ, as =d d(cos )/sin . The com-
promise of these two effects leads to a peak bias where the inclination
angle between n and the foil normal is about 54∘ (Fig. 5b). In common
cases, the projection of the interested interface is not very wide, which
means that its normal is not inside the blue part in Fig. 5b. Therefore,
the error of n mainly comes from the error of w.

In the third analysis, the interface normal was fixed to
[ 0.547, 0.514, 0.661] ,F an orientation with the largest bias in Fig. 5a,
while the number of input datasets varied from 3 to 15. The average of
bias was computed, again by randomly varying the condition sets over
10,000 configurations. As shown in Fig. 5c, the average bias of n would
reach 1.7∘ with 6 sets of inputs. It would reach 1.5∘ with 8 sets of inputs,
but barely improves afterwards. Based on the above analysis, 6 to 8 sets
of inputs would be the optimal choice.

In practice, it is not difficult to reach the data quality ( ± 1∘,
± 5nm) in this analysis, and hence to get the results with the corre-
sponding accuracy. Moreover, data quality can be further improved by
image measurements at higher magnification, and by using Kikuchi
patterns.

5.2. Comparison with existing methods

The geometry model used in the present method offers an inclusive
framework to link existing methods. The double trace and edge-on
methods can be considered as special cases of the present method in
CSL, while existing projection width method used specific simplifica-
tions of the non-linear part b t1 ( · )e

2 in Eq. (2). The summary of the
comparison is listed in Table 4.

In the double-trace method and edge-on methods, the interface
normal is always derived by the cross product of two vectors. These two
vectors can be two traces (double-trace), a projected trace and a beam
direction (single edge-on), a trace and a beam direction (trace & edge-
on), or two beam directions (double edge-on). Since the cross product is
equivalent to LSM when solving a determined equation, these methods
can all be treated as special cases of Eq. (4), with the traces determined
by Eq. (3).

Existing projection width methods [13,14] treated the non-linear
part b t1 ( · )e

2 in Eq. (2) with different strategies. Zhang et al. [13]
tilted the sample about the trace direction, resulting in be · t ≡ 0 and

= n bw d| · |e . In their work, the sample thickness h was used rather than
d. These two variables have a relationship, =h d cos (Fig. 1a), which
is valid only if the two foil surfaces are both perpendicular to the beam
direction at zero tilt. Qiu and Zhang [14] extended this work using the
latter assumption, but they substituted b t1 ( · )e

2 by taking the tilting
axis of the single-tilt sample holder, which happens to lie in the screen
plane, as a reference vector. The derivation of this method using the

Fig. 5. Statistical analysis of the bias of the results. (a) Distribution of the average bias for interface normals chosen within the pole figure viewed from z axis. α, β, η
and w have random errors. The beam directions reached by sample tilting are limited by dashed lines. (b) Same as (a) when the error is restricted to w. (c) The change
of bias with respect to the number of inputs for a fixed interface normal.
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present geometry model is given in Appendix C.
The limitation of the reference vector method is that this vector r

must be parallel to the tilting axis of the sample holder, otherwise the
n × s · r in Eq. C.3 would not have a simple result like x, making it too
hard to be solved. Therefore, this reference vector method is not ap-
plicable when the foil is tilted about more than one axis, because the
resulted tilting axis is neither constant, nor in the screen plane.

In addition, the sign of wi’s remains a certain ambiguity and iden-
tification of the correct sign depends on the operator’s experience in
these two methods. As shown in this work, the use of at least 3 input
sets enables the determination of the sign of wi’s straightforwardly.

5.3. Generalization of the present method

The plane determined by the present method is not necessary to be a
real interface. It could be a virtual plane defined by 3 traceable points,
e.g., points A, B, and K in Fig. 1b. This approach may thus be applied,
for instance, to determine the dislocation habit plane[17], or to assess
the planarity of 4 or more points.

The present method can also be used as an enhanced method to
determine the length and the direction of 1D features. Let l be the
projected length of the 1D feature and d be the original length of the 1D
feature. Each measurement of a 1D feature projection (bei, lpi, li) will
give

× =b l b ld l[ ] [0 ]iei pi ei
T T (8)

Eq. (8) can be solved the same way as described above. The length
vector of the 1D feature can thus be determined. This approach may be
used to track accurately the distance between pining points on a dis-
location line or the size of dislocation loops, as long as, 2 traceable
features, such as intersection points between dislocation segments, can
be detected.

Since all algorithms proposed here employed LSM, they are equally
robust against random errors and scalable on large datasets. Efficient
LSM functions can be found in plenty of math libraries, such as Eigen,
LAPACK and Intel®MKL. Hence the present algorithms can be

implemented as a real-time solver (as shown in Supplementary
Material). They also have the potential to be integrated with automatic
feature tracking in a tilting series, which could be a fast and efficient
way to automatically measure microstructural features in a foil.

6. Conclusions

A new analytical method to determine interface normals with great
capacity to intake excessive inputs has been proposed. It is a robust
algorithm based on a generalized geometrical model of interface pro-
jection, and it can also automatically deal with a large amount of data.
The effectiveness and accuracy of the method was verified using ex-
perimental observations of interfaces in TEM, regardless of the input
orientation or foil surface configuration. Given 6 or a few more sets of
inputs, even with considerable experimental errors, this method is still
capable of yielding reliable results. The present method is compared
with existing approaches, showing that many existing approaches can
be treated as special cases of the present method, while the present
method has fewer constraints. It can also be extended to determine 1D
features or to check the planarity of a set of features.
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Appendix A. LSM for solving overdetermined linear equations

For an overdetermined =Ax b equation, e.g., Eq. (4) with m ≥ 3, the least square solution of vector x is =+ +x A b, where +A is Moore-Penrose
inverse, or pseudo-inverse, of matrix A. The solution has the residual vector, = +e AA b b, and the residual error, +AA b b| |. This method is
applicable for most circumstances. However, when =b 0, e.g., Eq. (3), this method will only give a trivial solution of =x 0. =Ax 0 is a typical
problem of overdetermined homogeneous linear system, whose solution is the eigen-vector of ATA with the smallest eigen-value. The residual error
of the solution is the smallest eigen-value.

Determination of sgn(i) in Eq. (4) needs to compare the residual error of the solution of each sgn(i) case. For example, let =d 1, =n [1 0 0] ,T

=t [0 1 0] ,T and =b{ } {1/2[ 2 0 2 ], 1/2[ 2 0 2 ], 1/2[1 0 3 ]}ei
T . Then the theoretical values of {wi} are { 2 /2, 2 /2, 1/2}, while the

measured ones are their absolute values { 2 /2, 2 /2, 1/2}. There are 4 possibilities of sgn(i): (+ + +), (+ + -), (+ - +), and (+ - -), and the
residual errors of the solution based on them are 0.26, 0.97, 0, and 0.71, respectively. The one with the minimum residual error, (+ - +), is the
proper sgn(i), which agrees with the theoretical value. In practice, this procedure should be done by computer programs, as demonstrated in
Supplementary Materials.

Appendix B. Bootstrap method for estimating confidence intervals

Bootstrap is a statistical technique to estimate the variation of statistics that are computed from a set of data [18]. Here we use the bootstrap

Table 4
A comparison between this work and previous methods.

Method Coordinates Formulas Special requirements Number of inputs

double-trace [6] lattice Eq. (3) another line feature 2
single edge-on [5] lattice Eq. (4) edge-on condition 1
double edge-on [7] lattice Eq. (4) edge-on condition 2
trace & edge-on [9] lattice Eq. (3) and Eq. (4) edge-on condition 3
projection width [13] holder Eq. (4) tilting about the trace 2
projection width [14] holder Eq. (C.4) tilting axis in screen 2
this work any Eq. (3) and Eq. (4) none ≥ 3
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method to estimate the variation, i.e., confidence intervals, of d and n determined by Eq. (4). In Eq. (4), t and sgn(i) are considered as constant
parameters in the equation, as they have already been determined. Thus, the data is composed of m data points of (bei, wi). Then, the data is
resampled with replacement to generate a resampled data set of size m, with which the statistics d* and n* (star denoting resampled data) can be
calculated. This procedure is repeated 10,000 times, the deviations between d* and d and the angle between n* and n can also be calculated. The
confidence interval of d is given by the 95th percentile of the deviation of d*. The confidence interval of n is given by the 95th percentile of the
deviation angle of n*, denoting a confidence cone around n [19]. Usually using the 95th percentile will result in a confidence level of 95%. However,
t in Eq. (4) also contains some error, which may degrade the internal consistency and thus the confidence level. As tested in Section 5.1, the
confidence level is greater than 92%.

Appendix C. The projection width method reported in [14]

Here we used the symbols and equations in present work to derive the equations reported in [14].
By replacing t in Eq. (2) with n × s/|n × s|, and temporarily ignoring the absolute sign on be · n, we get:

=
×

b n
n s n s b

w h ·
1 ( · ) ( · )

e
2

e
2 (C.1)

By introducing r, the angle η between tp and r is expressed by:

= = ×
×

t r
t

n s r
n s n s b

cos
·

| |
·

1 ( · ) ( · )
p

p 2
e

2 (C.2)

By substituting Eq. (C.2) into Eq. (C.1), we get Eq. (C.3). h and n have to be combined, for they both need solving.

×
=b

n s r
nh w·(

·
)

cose (C.3)

In the work of Qiu and Zhang, the sample is tilted about y axis with the screen remains unchanged. The xr, yr, zr vectors at zero tilt in their work
are the basis vectors in the holder coordinates system. Therefore, the parameters should be set as =b [0, 0, 1] ,e H

T =r [0, 1, 0] ,H
T

=n x y zRy( )[ , , ] ,H
T and =s Ry( )[0, 0, 1]H

T . In addition, the trace direction was measured at zero tilt angle by η0, which would directly give t.
Similar as Eq. (4), Eq. (C.4) is constructed using two sets of Eq. (C.3) and =t n· 0. The ± sign is caused by the uncertainty of wi signs, and should be
eliminated by inspecting the trend of projection width change.

= ±
h
x

x
y
z

w
w

sin 0 cos
sin 0 cos

sin cos 0

/cos
/cos
0

1 1

2 2

0 0

1 1

2 2
(C.4)

The solution of Eq. (C.4) is Eq. (C.5), the same as reported in their work.

=
h

hy x
hz x

w w

w w

w w

/
/

1
sin( )

cos
cos

cos
cos

cos
cos

cos
cos

tan

sin
cos

sin
cos

2 1

1 2

1

2 1

2

1 2

1

2 1

2
0

1 2

1

2 1

2 (C.5)

Appendix D. Rotation matrices

Matrices Rx(θ), Ry(θ), Rz(θ) are right-handed rotation matrices with rotation angle θ about x, y, z axis respectively.

=Rx( )
1 0 0
0 cos sin
0 sin cos (D.1)

=Ry( )
cos 0 sin

0 1 0
sin 0 cos (D.2)

=Rz( )
cos sin 0
sin cos 0

0 0 1 (D.3)

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.ultramic.2020.113009
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