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Some specific structures of intermetallic alloys, like approximants of

quasicrystals, have their unit cells and most of their atoms located on a periodic

fraction of the nodes of a unique Z-module [a set of the irrational projections of

the nodes of a (N > 3-dimensional) lattice]. Those hidden internal symmetries

generate possible new kinds of defects like coherent twins, translation defects

and so-called module dislocations that have already been discussed elsewhere

[Quiquandon et al. (2016). Acta Cryst. A72, 55–61; Sirindil et al. (2017). Acta

Cryst. A73, 427–437]. Presented here are electron microscopy observations of

the orthorhombic phase NiZr – and its low-temperature monoclinic variant –

which reveal the existence of such defects based on the underlying Z-module

generated by the five vertices of the regular pentagon. New high-resolution

electron microscopy (HREM) and scanning transmission electron microscopy

high-angle annular dark-field (STEM-HAADF) observations demonstrate the

agreement between the geometrical description of the structure in five

dimensions and the experimental observations of fivefold twins and translation

defects.

1. Introduction

The present article is the experimental continuation of a

search to identify possible new defects in structures where the

atoms, in addition to being periodically distributed, are

located on a long-range-ordered subset of the nodes of a

Z-module.

The phase diagram of the binary system (Ni, Zr) presents a

congruent solidification point at 1533 K for the equiatomic

composition Ni50Zr50 close to a eutectic transformation, on the

Zr-rich side, with a precipitation of Zr67Ni33 at 1295 K. The

equiatomic Ni50Zr50 phase has an orthorhombic structure

which, as will be demonstrated later, has the very remarkable

property of being fully described using one unique pentagonal

Z-module including both atomic species. This orthorhombic

stoichiometric NiZr structure was first reported by Kirk-

patrick et al. (1962) as a CrB-type structure and has a

remarkable tendency to generate quinary twins. This feature

has been discussed in depth in a general framework by Parthé

(1976). The first direct observations of those twins by trans-

mission electron microscopy (TEM) were performed by Jiang

et al. (1985) and a few years later, in much more detail, by

Bouzy et al. (1991). Very recently, an impressive experimental

study of the morphology of slowly solidified samples cooled in

a containerless electrostatic levitation furnace has revealed

beautiful central twins forming an almost perfect decagon in
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solidified spherical samples, as observed by scanning electron

microscopy (SEM), energy-dispersive X-ray spectroscopy

(EDS) and electron backscatter diffraction (EBSD) (Horn-

feck et al., 2014).

2. Embedding the NiZr orthorhombic (monoclinic)
phase in five dimensions

After Kirkpatrick et al. (1962), the orthorhombic phase NiZr

has the space group Cmcm with lattice parameters |A| =

0.3268, |B| = 0.9973 and |C| = 0.4101 nm. It is defined by two

Wyckoff positions 4c m2m (0, y, 1/4) with yNi = 0.0817 and yZr

= 0.3609 as shown in Fig. 1.

All Ni and Zr atoms are distributed along the z direction at

locations �1=4. It is thus possible, with no loss of information,

to characterize this z coordinate by a simple two-valued

symbol � analogous to an internal scalar spin parameter.

Considering the two remaining coordinates ðx; yÞ, the

fundamental point to emphasize is that the hexagons observed

on the projection of the structure along the direction [0, 0, 1]

are very close1 to the hexagons that are obtained by super-

imposing two opposite regular pentagons sharing the same

diagonal2 as shown in Fig. 1. Because of this very specific

internal geometry of the hexagons and the way they are

connected in rows, the resulting projected two-dimensional

structure can be entirely described using the node positions of

the five-dimensional regular primitive hypercubic lattice

where the five basic vectors project along the vertices of a

regular pentagon. This is made clear in Fig. 1 where a tiling is

drawn in the background in light grey based on the two basic

prototiles (rhombi of acute angles �=10 and �=5) of the

famous Penrose tiling (Penrose, 1979): all atoms are located

on certain nodes of this tiling. Therefore, and very similarly to

the case of quasicrystals (see Shechtman et al., 1984), this

allows us to reformulate the ideal structure of NiZr by

embedding it in a five-dimensional space using atomic posi-

tions with five indices for the ðx; yÞ description, in addition to

the scalar two-valued spin-like index � representing the z

coordinate �1=4. This new configurational five-dimensional

Euclidian space corresponding to the ðx; yÞ plane decomposes

as

R5
¼ R2

k � R2
? � R�

where R� is the one-dimensional line along the main diagonal

ð1; 1; 1; 1; 1Þ in five-dimensional space. This is the standard

way of generating the Penrose tiling using the cut-and-project

method [see for instance Duneau & Katz (1985), Kalugin et al.

(1985), Elser (1986)].

The five indices are unambiguously determined up to any

five-dimensional translation along the main diagonal

� ¼ ð1; 1; 1; 1; 1Þ. For simplicity and with no loss of generality,

we choose to gather all atomic positions in a unique and the

same four-dimensional plane perpendicular to �: the actual

atomic positions V of NiZr can thus be expressed as V =

ðn1; n2; n3; n4; n5;�Þ, with
P5

i¼1 ni = Const.

As easily seen in Fig. 1, the two-dimensional (x; y) unit cell

of NiZr is defined by the five-dimensional vectors A =

ð0; 1; 1; 1; 1Þ and B = ð0; 3; 1; 1; 3Þ, both perpendicular to �.

Because of its C character, the two-dimensional lattice

generated by A and B in five dimensions, say Lk, is defined by

Lk ¼ nðAþ BÞ=2þmðA� BÞ=2

¼ ð0; 2m� n;�n;�m; 2n�mÞ; n;m 2 Z:

The structure itself is defined by four translation orbits3

satisfying the (arbitrary) condition
P

ni = Const. = 1, irre-

spective of the point symmetry elements:

NiZr :¼ fð0; 1; 0; 0; 0;þÞZr; ð0; 0; 0; 0; 1;�ÞZr;

ð0; 0; 1; 0; 0;�ÞNi; ð0; 0; 0; 1; 0;þÞNig Lk:

The five-dimensional symmetry elements are written as usual

as bgg ¼ ðgjtÞ where t is the associated five-dimensional trans-

lation and g is the point symmetry operation economically

written as signed permutations pðeiÞ of the five unit vectors in

five dimensions and a simple multiplication �1 for the stan-

dard z coordinate:

bgg ¼ ðgjtÞ ¼ ðfpðe1Þ; pðe2Þ; pðe3Þ; pðe4Þ; pðe5Þ;�1gjtÞ:
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Figure 1
The NiZr structure (Kirkpatrick et al., 1962) is a CrB-type structure
Cmcm with lattice parameters |A| = 0.3268, |B| = 0.9973 and |C| =
0.4101 nm, defined by two Wyckoff positions: Ni at (0, 0.0817, 1/4) and Zr
at (0, 0.3609, 1/4). Ni and Zr atoms projected in the [001] plane form
hexagons that are the superimposition of two opposite regular pentagons
(in red and blue in the figure) sharing the same diagonal with an accuracy
better than 1%. The symbols + and � correspond to the z coordinates
being equal, respectively, to 1/4 and �1/4. The two usual tiles of the
Penrose tiling (rhombi of acute angles �=10 and �=5) are outlined in light
grey. All atomic positions belong to the Z-module generated by the five
vectors in green noted from 1 to 5. The structure can advantageously be
described as a tiling of a unique equilateral hexagonal prototile drawn in
purple (see Fig. 3).

1 The accuracy of this ideal description is given by the ratio of the lattice
parameters |a|/|b| = 0.3268/0.9973 = 0.3277 instead of the ideal value tan�=10’
0.3249 for perfect regular pentagons; this gives an accuracy with respect to the
ideal model better than 1%.
2 In that regular pentagonal scheme, the ideal positions should be yNi =
1=ð6� þ 2Þ = ð3� � 4Þ=10 = 0.08541 instead of 0.0817 and yZr =
ð2� þ 1Þ=ð6� þ 2Þ = ð2þ �Þ=10 = 0.3618 instead of 0.3609.

3 The translation orbit of a point v is the subset of its equivalent points that can
be written as v0 ¼ vþ T where T is a translation of the lattice, irrespective of
the point symmetry of the crystal.



For example the c mirror perpendicular to B in Cmcm

transforms e1 into itself, e2 into e5 and vice versa, e3 into e4 and

vice versa, and adds 1
2 to the z coordinate thus transforming 1

4

(symbol +) into � 1
4 (symbol �) and vice versa, corresponding

for the scalar component to a multiplication by �1. It can

therefore be written as bmmB = ðf1; 5; 4; 3; 2; 1gj0; 0; 0; 0; 0Þ after

choosing the point � in Fig. 1 as origin. Similarly, the

mirror perpendicular to A can be written bmmA =

ðf1; 5; 4; 3; 2; 1gj0; 1; 0; 0; 1Þ. Finally, the mirror perpendicular

to C and passing through z = 1=4 reduces to the identity

in the present five-dimensional representation: bmmC = Id =

ðf1; 2; 3; 4; 5; 1gj0; 0; 0; 0; 0Þ.

Thus, the orthorhombic NiZr structure can be described

using a subset of a Penrose tiling using the two rhombi of acute

angles �=10 and �=5. As defined in a previous article (Sirindil

et al., 2017) we call this kind of structure a Z-module-based

alloy.

2.1. Elementary five-dimensional geometry

Starting from a five-dimensional node (n1; n2; n3; n4; n5), we

obtain its components (xk; yk) in the physical space Ek = R2
k

and its three components (x?; y?; z?) in the complementary

space Ek = R2
? � R� according to the following usual formulas

(see, for instance, Duneau & Katz, 1985) using ’ = 2�=5:

xk ¼
2
5

� �1=2
ðn1 þ n2 cos ’þ n3 cos 2’þ n4 cos 2’þ n5 cos ’Þ

¼ 1
101=2 ð2n1 þ ðh� h0Þ� � hÞ

yk ¼
2
5

� �1=2
ðn2 sin ’þ n3 sin 2’� n4 sin 2’� n5 sin ’Þ

¼ 3��
10

� �1=2
ðkþ k0�Þ

x? ¼
2
5

� �1=2
ðn1 þ n2 cos 2’þ n3 cos ’þ n4 cos ’þ n5 cos 2’Þ

¼ 1
101=2 ð2n1 þ ðh

0 � hÞ� � h0Þ

y? ¼
2
5

� �1=2
ðn2 sin 2’� n3 sin ’þ n4 sin ’� n5 sin 2’Þ

¼ 3��
10

� �1=2
ðk0 � k�Þ

z? ¼
1
5

� �1=2
ðn1 þ n2 þ n3 þ n4 þ n5Þ

¼ 1
51=2 ðn1 þ hþ h0Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð1Þ

with � = ð1þ 51=2Þ=2, h = n2 þ n5, h0 = n3 þ n4, k = n3 � n4,

k0 = n2 � n5 and using

cos ’ ¼ ð� � 1Þ=2; sin ’ ¼ ð� þ 2Þ1=2=2;

cos 2’ ¼ ��=2; sin 2’ ¼ ð3� �Þ1=2=2 ¼ ð� � 1Þ sin ’:

To generate the orthorhombic NiZr structure, we apply a

shear of the five-dimensional lattice � along R2
? – keeping R�

invariant – in such a way as to align two independent nodes of

� along R2
k by the transformation (see Jarić & Mohanty, 1987;

Gratias et al., 1995):

x0k ¼ xk
x0? ¼ x? � "̂"xk

�
: ð2Þ

This will generate a two-dimensional lattice in R2
k. Taking A

and B, the two five-dimensional vectors, the projections of

which in R2
k define the unit cell of the structure, we ensure the

generated structure is periodic of periods ½Ak;Bk� by applying

the shear matrixb"" such that

½A?;B?� �b""½Ak;Bk� ¼ 0 and thereforeb"" ¼ ½A?;B?�½Ak;Bk�
�1:

Using A = ð0; 1; 1; 1; 1Þ and B = ð0; 3; 1; 1; 3Þ, we obtain

½Ak;Bk� ¼
1

101=2

4� � 2 0

0 �ð6þ 2�Þð3� �Þ1=2

� �

and

½A?;B?� ¼
1

101=2

2� 4� 0

0 ð2� � 6Þð3� �Þ1=2

� �
;

leading to

b"" ¼ �1 0

0 2� � 3

� �
: ð3Þ

Equations (1) and (2) together with the explicit expression (3)

ofb"" are all we need to fully handle the embedding of the NiZr

three-dimensional structure into the five-dimensional super-

space back and forth and generate all possible defects that

keep the underlying Z-module invariant in Ek.

2.2. Construction of the atomic surfaces generating the
orthorhombic NiZr structure

The definition of atomic surfaces for periodic structures has

been discussed in a previous article (Sirindil et al., 2017) where

it has been shown that the simplest choice of atomic surfaces is

to collect the Voronoi cells in E? ¼ R2
? � R� centred on the

projections in E? of the translation orbits defining the struc-

ture.

Here, the orthorhombic structure is generated by four

translation orbits: w_1 = ð0; 1; 0; 0; 0Þ, w2 = ð0; 0; 1; 0; 0Þ, w3 =

ð0; 0; 0; 1; 0Þ and w4 = ð0; 0; 0; 0; 1Þ as shown in Fig. 2. Using

relations (2) and (3), we note that the nodes V =

ðn1; n2; n3; n4; n5Þ of � project after shear in E? = R2
? � R� as
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Figure 2
The four Voronoi cells in E? defining the atomic surfaces for the
orthorhombic phase of NiZr are aligned along the y? direction. This very
unusual situation suggests generating the structure using the hexagonal
tile based on the three translations t1 = w3 � w1 = ð0; 1; 0; 1; 0Þ, t2 =
w4 � w1 = ð0; 1; 0; 0; 1Þ and t3 = w4 � w2 = ð0; 0; 1; 0; 1Þ, all three relating
a Zr atom to another Zr atom.



�?V ¼
1

101=2

4n1 � n2 � n3 � n4 � n5

ð7� 4�Þ1=2
ðn2 � 3n3 þ 3n4 � n5Þ

21=2ðn1 þ n2 þ n3 þ n4 þ n5Þ

0
@

1
A:

This makes the four translation orbits of the structure

projecting in E? four aligned points along y? as shown in Fig. 2:

w1 ¼ �ð�1; ð7� 4�Þ1=2; 21=2Þ;w2 ¼ �ð�1;�3ð7� 4�Þ1=2; 21=2Þ

w3 ¼ �ð�1; 3ð7� 4�Þ1=2; 21=2
Þ;w4 ¼ �ð�1;�ð7� 4�Þ1=2; 21=2

Þ

with � ¼ 1=101=2.

This analysis suggests that the structure can also econom-

ically be viewed as a perfect tiling of a hexagonal prototile, as

shown in Fig. 3(a), defined by the three vectors t1 =

ð0; 1; 0; 1; 0Þ, t2 = ð0; 1; 0; 0; 1Þ and t3 = ð0; 0; 1; 0; 1Þ which

generate the network of the Zr positions. Each of these

hexagonal tiles is the very equivalent of a primitive unit cell.

As will be shown later, the fact that the lengths of the three

vectors t1; t2; t3 are equal means that several kinds of tiling are

equally possible, as exemplified in Fig. 3(b), with no change in

the chemical species and atomic bonds of first neighbours. This

makes twinning the easiest defect process in this alloy.

2.3. Symmetry breaking: the basic defect

The point symmetry of the four-dimensional lattice

perpendicular to � which generates the Z-module is 10mm0

irrespective of the nature of the chemical species. Thus, the

symmetry breaking induced by the perpendicular shear from

10mm0 to 2mm0 generates five twin variants issued from the

coset decomposition:

10mm0 ¼ ðIdþm2 þm3 þm4 þm5Þ2mm0

where mi designates the mirrors containing the ith vector

defining the pentagon (in green in Fig. 3). Because of the c

mirror of the structure, the variants are two-by-two equiva-

lents: the mirrors m2 and m5 are in the ð1; 1; 0Þ and ð1; 1; 0Þ

planes whereas the mirrors m3 and m4 are in irrational planes

with respect to the structure. Thus, a given variant can have

only two different adjacent twins symmetric with respect to its

c mirror. The atomic model of the twin operation is shown in

Fig. 4. We choose the origin on the atomic Zr site number 5 in

the figure. The twin point operation is the mirror defined by

m½110� ¼ f3; 2; 1; 5; 4;�1g:

The multiplication by �1 on the spin variable corresponds to

the fact that to be coherent with respect to the tiling the mirror

twin must transform � symbols into � implying thus an

irreducible translation along z by �1=2.

The translation t associated with the twin in the ðx; yÞ plane

is shown in brown in Fig. 4 and is written T ¼ ð0; 1; 0; 1; 0Þ. It

decomposes into two parts: T ¼ Ti þ Tr where Ti is the irre-

ducible component independent of the choice of the origin

and Tr is the reducible part that vanishes by choosing the

origin on the mirror:4

Ti ¼
1

4
ð0; 4; 0; 2; 2Þ; Tr ¼

1

2
ð0; 0; 0; 1; 1Þ:

In the standard Cmcm unit-cell coordinates, the irreducible

translation, including the component along the z direction, is

therefore

ti ¼
1

4
½1; 1; 0� þ

1

2
½0; 0; 1� ¼

1

4
½1; 1; 2�

which is identical to the irreducible translation proposed

several years ago by Bouzy et al. (1991) based on a quite

different approach. Because of the C lattice, translation T in

Fig. 4 can equivalently be written as T = ð0; 1; 0; 0; 1Þ which

translates into t = ð0; 1=ð2þ �Þ; 1=2Þ expressed on the unit cell

of crystal I. As expected from the expression of the pentagonal

projections (1), the y component of this translation is an

irrational fraction of the lattice parameter B.

This basic mirror twin defect is remarkably coherent with

respect to the atomic structure. Because the tiling of the

elementary hexagons remains continuous at the level of the

650 Abdullah Sirindil et al. � Atomic scale analyses of Z-module defects in NiZr Acta Cryst. (2018). A74, 647–658

research papers

Figure 4
The simplest model of the structure of the quinary twin from the analysis
in terms of Z-module invariance as illustrated by the two pentagons in
green. The twin operation ½m̂mð110Þjð0; 1; 0; 1; 0Þ� is expressed in the Cmcm
unit-cell coordinates.

Figure 3
(a) The equilateral hexagonal prototile that generates the orthorhombic
NiZr structure opens up a wide variety of possible tilings including the
high-symmetry pentagonal snowflake (b). Whatever the tiling, all atoms
apart from the unique central one in (b) share the same kind of
environment to first neighbours as in the CrB reference structure. The set
(b) describes the whole possible twins in the decomposition from 10mm0

to 2mm0: each variant can have two adjacent variants, obtained by a
rotation ��=5 [or equivalently by a c mirror in the planes ð�1; 1; 0Þ].

4 Any translation t associated with a point operation ĝg decomposes into a
reducible part tr that can reduce to zero by an ad hoc choice of origin, and an
invariant irreducible part ti . This decomposition is particularly simple when ĝg is
of order 2; ĝg

2
¼ 1̂1, since then ĝg has eigenvalues�1. Thus, ti is in the eigenspace

associated with the eigenvalue +1 and tr in the one associated with the
eigenvalue �1: ĝgti ¼ ti; ĝgtr ¼ �tr.



interface, the chemical bonds between first neighbours are

respected in all aspects, chemistry, lengths and angles between

bonds. This makes this defect an excellent candidate to be

actually observed in real crystals as will be shown next.

Translation boundaries are easily obtained by using two

consecutive mirror twin defects. The thinnest translation

defect is generated by inserting one single slab of twinned

equilateral hexagons as shown in Fig. 5. The associated

translation is T = ð1; 2; 1; 0; 0Þ that is t = ð2� �Þ=2½1; 1; 0�

expressed in the Cmcm unit-cell coordinates. Of course, other

global translation defects can be constructed using N slabs of

twinned hexagons instead of one, leading thus to TN =

Nð1; 2; 1; 0; 0Þ or tN = Nð2� �Þ=2½1; 1; 0�.

Finally, we expect to observe the module dislocations that

border the previous translation defect, i.e. module dislocations

with a Burgers vector B = T = ð1; 2; 1; 0; 0Þ as shown in Fig. 6.

This simple Burgers vector of the five-dimensional lattice

takes an irrational value b = ð2� �Þ=2½1; 1; 0� once expressed

in the orthorhombic unit-cell coordinates. Observe that this

dislocation is very special: as the translation defect is in fact a

thin slab of a twinned crystal, the dislocation is the interface

dislocation necessary to grow one step of a slab of a twinned

individual in the other making it a so-called disconnection

(see, for example, Hirth & Pond, 1996).

3. Sample preparation

In order to check the validity of our previous predictions from

the Z-module description, we prepared samples of NiZr for

high-resolution TEM investigations in high-resolution elec-

tron microscopy (HREM) and scanning transmission electron

microscopy high-angle annular dark-field (STEM-HAADF)

modes. Samples used in the present study were obtained by

two different methods:

(a) A first fusion under magnetic levitation of a mother

alloy of nominal atomic composition Ni44Zr56, remelted and

rapidly quenched by planar flow casting and annealed for one

week at 973 K in sealed ampoules under vacuum.

(b) High-purity elements [purity of Zr 99.97% (Smart

Elements), Ni 99.995% (Alfa Aesar)] were prepared and

alloyed by arc-melting at the DLR in Cologne (Germany)

yielding a spherical sample of intermetallic NiZr with a

diameter of 3 mm. Subsequently the sample was processed in

an electrostatic levitation furnace (ESL)5 under high vacuum

conditions (10�5 Pa) in order to obtain a single homogeneous

crystallization event at high undercoolings (�T = 300 K) and

specific microstructural features as described by Hornfeck et

al. (2014).

Samples (a) are roughly 300 mm-thick ribbons in which

small discs of 3 mm in diameter are cut and polished. The

characterization by X-ray powder diffraction has been

performed on a Panalytical X’PERT Pro diffractometer using

Co K� radiation with wavelength 0.17889 nm. The powder

spectra reveal that the samples contain essentially the

orthorhombic phase and a few per cent in volume of NiZr2.

Concerning samples (b), since the orthorhombic phase

grows in large multi-twinned grains with the [0,0,1] direction

being clearly identifiable by sample surface features, these

samples have been cut perpendicularly to the [0,0,1] direction

and subsequently ground and polished until discs of about

150 mm remained. The highly accurate orientation of the

samples makes the observations by HREM and STEM-

HAADF particularly efficient: because of the strong induced

texture, the orthorhombic phase grows in large multi-twinned

grains with the direction [0,0,1] being the normal to the disc

plane.

4. Electron microscopy analyses at atomic resolution

Samples (a) were thinned by mechanical grinding down to

100 mm and eventually thinned to electron transparency using
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Figure 6
Simple sketch of the basic module dislocation with Burgers vector
B ¼ ð1; 2; 1; 0; 0Þ.

Figure 5
The simplest Z-module translation defect model consists of introducing a
thin slab of twinned hexagons (noted II) along a ð1; 1; 0Þ plane. This
generates an elementary translation between the upper and lower parts of
crystal I of T = ð1; 2; 1; 0; 0Þ (see the fine dotted arrows) corresponding to
t = ð2� �Þ=2½1; 1; 0� in the Cmcm unit cell.

5 A typical ESL processing cycle with NiZr consists of the following steps: the
levitating sample is heated with an infrared laser (P = 75 W, � = 808 nm) in
order to melt the sample; the temperature of the melt is further increased by
about 50 K above Tm in order to evaporate possible contaminants. The heating
laser is turned off, the melt cools and eventually undercools below Tm only
through radiation of heat, with a mean cooling rate of about 50 K s�1;
solidification sets in at �T = 300 K below Tm. A NiZr sample, which solidifies
at such undercoolings, exhibits two distinctive poles on its surface, similar to a
globe. In the sample interior these poles are connected by the crystallographic
direction [0,0,1] (see Hornfeck et al., 2014). With these surface features one
has the opportunity to orient the spherical sample and cut it perpendicular to
[0,0,1], which was realized with a custom-built orientation tool.



ion milling (Gatan PIPS) until the formation of a hole.

Samples (b) were electropolished using a Tenupol with a

solution of 10% perchloric acid and 90% methanol at 243 K

under 35 V.

Both samples (a) and (b) have been examined in HREM

mode on two different machines: a Topcon 002B equipped

with an LaB6 cathode operating at 200 keV with a point-to-

point resolution of 0.18 nm (ICMPE, Thiais, France) and a

Hitachi 3300 electron microscope operating at 300 keV with

Cs ’ 0, Cc = 3.7 mm (CEMES, Toulouse, France). The STEM-

HAADF and STEM bright-field (STEM-BF) observations

have been performed on an FEI Titan Themis 200 [Center for

Nanosciences and Nanostructures (C2N), Marcoussis, France].

This microscope uses an XFEG gun under 200 keV and is

equipped with a Cs corrector (point-to-point resolution

around 80 pm) and a CMOS CETA 4 k � 4 k camera. It can

operate under various imaging STEM modes: BF and

HAADF.

In both (a) and (b) samples, conventional BF TEM images

show numerous defects, twins and translation boundaries.

However, careful electron microscopy diffraction observations

have shown in various locations of the samples a few addi-

tional low-intensity spots, like the one located at 1=2ð1; 1; 1Þ,

that are typical of a second unexpected phase. We identified

this low-temperature phase as a monoclinic deformation of the

orthorhombic phase appearing below 473 K. It results from a

small shift of the atomic positions along the z direction for

both Ni and Zr, and is analogous to the phase discovered

several years ago by Bendersky et al. (1996) in the (Pd,Zr)

system. It is discussed in more detail in Appendix A.

4.1. Quinary twins

Quinary twins are very frequent in both samples (a) and (b)

and quite easy to recognize. In order to make a full three-

dimensional analysis of the associated translation, we made

several HREM observations along the [112] direction to

determine the translation part along the z direction. The result

is seen in Fig. 7 together with the atomic simulations from our

model with and without the 1/2 translation along z: it is clear

that only the model with the z = 1/2 component corresponds to

the experimental image.

In addition to these observations along the [112] direction,

we performed HREM, STEM-BF and STEM-HAADF

observations to determine the translation components in the

[001] plane using samples (b). The HREM picture (CEMES)

in Fig. 8 shows a clear translation associated with the mirror

twin that fits quite well with the expected model of Fig. 4.

Observations at the ultimate resolution of atomic level in

STEM-HAADF and STEM-BF modes performed on the same

samples along the [001] direction fully confirm the model with

a perfect agreement as shown in Fig. 9. The very comparable

contrast variations at the level of the interface between the

HAADF and BF micrographs prove that no significant

displacements of the atomic positions occur at the boundary

level owing to the remarkable crystalline coherency generated

by the continuity of the tiling at the boundary crossing.
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Figure 8
HREM image of a quinary twin observed along the [001] direction
showing the translation associated with the mirror twin with the expected
model and an insert of the image simulation made with the theoretical
translation T ¼ ð0; 1; 0; 1; 0Þ of our model.

Figure 7
Quinary twin observed in HREM along the [112] direction with
superimposition of the model ½m̂mð110Þj0; 1=ð2þ �Þ; z� expressed in the
Cmcm unit-cell coordinates shown in Fig. 4 with z ¼ 0 (a) and z ¼ 1=2
(b). The distribution of white dots in the micrograph at the level of the
interface is clearly in favour of the z ¼ 1=2 solution.



4.2. Translation defects and module dislocations

Here, too, the prediction of the model has been fully

experimentally verified: the only translation boundaries we

could observe were those generated by a single slab of

microtwin embedded in the crystal corresponding to the

models in Figs. 5 and 6. This is exemplified on the HAADF

micrograph of Fig. 10(a) which shows the planar translation of

the fault vector T = ð0; 0; 1; 2; 1Þ defect on the right, with the

module dislocation of the Burgers vector b = T depicted in Fig.

10(b). The defect fits perfectly well with the simple theoretical

model of Fig. 6.

The graphical way of determining the Burgers vector for an

experimental picture is trivially achieved by reconstructing the

very same sequence of undistorted hexagonal tiles as the one

observed in the picture all around the defect and then

measuring the closure default (in green in Fig. 10b).
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Figure 9
(a) STEM-HAADF atomic resolution of the quinary twin; (b) STEM-BF
showing the remarkable invariance of the contrast on both sides of the
boundary due to the very small local elastic field at the level of the
boundary.

Figure 10
(a) HAADF observation of the elementary module dislocation defect in
NiZr corresponding to the model of Fig. 6: the translation defect (in
purple) with fault vector T = ð0; 0; 1; 2; 1Þ is bounded by the module
dislocation with Burgers vector B = T. (b) Example of a circuit
constructed on the Z-module determining the Burgers vector B =
ð0; 0; 1; 2; 1Þ consistent with the translation vector T of the corresponding
planar fault.

Figure 11
High-resolution STEM-BF (a) and STEM-HAADF (b) micrographs
showing the two basic kinds of translation defects (S and D) and the
elementary module dislocation B. The line noted S shows the simplest
translation defects corresponding to the model in Fig. 5 made of one
unique slab of hexagons with fault vector TS = ð0; 0; 1; 2; 1Þ. The double
line D shows the translation defects generated with two slabs of hexagons
TD = 2� ð2; 1; 0; 0; 1Þ. Finally, the dislocation B can be analysed using a
simple generalization of Burgers circuit drawn in (c) leading, as expected,
to a Burgers vector B = TS = ð0; 0; 1; 2; 1Þ. As shown in (a), the translation
defects generate almost no local deformation in contrast to the
dislocation B which is surrounded by an observable displacement field
generating the dark shadow extending for a few atomic distances.



We have analysed many defects on

the various samples and have always

found that their configurations can be

decomposed using our three basic

defects: quinary twin, translation

boundary and the corresponding

elementary module dislocation.

Fig. 11 shows at once three basic

defects observed in both STEM-BF (a)

and STEM-HAADF (b) modes. The

translation boundary noted S is the

exact experimental realization of the

model of Fig. 5; the translation defect

noted D is the two-slabs version of this

defect. Finally, the localized defect

noted B is the module dislocation that

bounds the default S. A way of

analysing this dislocation consists of

drawing a close circuit of the basic

hexagons around the defect (in yellow

in Fig. 11b) and reproducing the very

same circuit using ideal undeformed

hexagons (see Fig. 11c): the closure

defect is a direct measure of the Burgers

vector. Here, we find B = ð0; 0; 1; 2; 1Þ which is, as expected,

the value of the translation T associated with S.

Many other more complex configurations have been

observed. For example, Fig. 12 shows a HAADF picture with

two module dislocations, one translation defect (in blue) and

quinary twins (in red). We note by A and A0 the unit vectors a

in, respectively, crystal I and II: A = ð1; 0; 1; 1; 1Þ and A0 =

ð1; 1; 1; 1; 0Þ. Having T = ð0; 1; 2; 1; 0Þ and using the Burgers

circuit on the module drawn in Fig. 12(b) we obtain B1 =

ð1; 2; 1; 0; 0Þ and B2 = ð2; 1; 0; 0; 1Þ. It is thus easily verified

that

B2 þAþA0 ¼ 0; B1 þ TþA0 ¼ 0:

These relations are consistent with the fact that the twin

boundary is displaced by one step along A0 at the level of each

module dislocation.

5. Discussion

All ultra-high-resolution HAADF or BF images presented in

this study are various realizations of a single-module crystal in

the sense that the entire observation areas are described on a

unique Z-module that is invariant everywhere on the picture:

vectors relating any two (equivalent) white dots on the

micrographs are integer linear combinations of the five

pentagon unit vectors with constant sum.

Some module dislocations are located inside the crystals

(see Fig. 10), others are located at the interfaces between

twinned crystals like those of Fig. 12. In both cases, these

dislocations are the same type of module dislocations with the

same Burgers vector of type B = ð1; 2; 1; 0; 0Þ whatever their

locations with respect to the other defects.

The use of Z-modules in crystallography goes beyond solely

structural aspects. In fact, any geometrical description that

deals with more than one crystal as in the case of the geometry

of grain boundaries [see for instance, Pond (1989) and Hirth &

Pond (1996)] is naturally adapted to the use of Z-modules as a

basic description tool. For example, let �1 and �2 be the

lattices of two adjacent crystals defined by the unit-cell

vectors, respectively, Ai and A0i, i running from 1 to 3. The

natural module to consider is generated by the union B =

�1 [�2, also called a bilattice, that is the set of the points �
such that

B :¼ � ¼
P3

i¼1

ðniAi þ n0iA
0
iÞ; ni; n0i 2 Z

� �
:

This module B has a rank N between 6 and 3 according to the

relative orientation of the lattices �1 and �2. It is usually the

optimized description of the bicrystal: an N-dimensional

lattice representation that includes all possible kinds of defects

that can be encountered in the study of the bicrystal.

However, in specific cases, this module might well not be the

most appropriate to describe defects. Indeed, there are cases,

as in NiZr, where the atomic structure itself is a decoration of

a deeper hidden Z-module generated by the N vectors fekg. In

that case, the unit cells fAkg and fA0kg of the two lattices �1

and �2 can be expressed as integer linear combination of the

N vectors ek:

Ai ¼
PN
k¼1

pi;kek; A0i ¼
PN
k¼1

p0i;kek; i ¼ 1; 2; 3

and thus
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Figure 12
Two module dislocations, a translation boundary and a quinary twin. The translation boundary is
along the line drawn in blue, whereas the quinary twin interface is along the red line(s). The twin
boundary is displaced by one step A or equivalently A0 at the level of each module dislocation.



B :¼ � ¼
PN
i¼1

P3

i¼1

ðnipi;k þ n0ip
0
i;kÞek ni; n0i 2 Z

� �
: ð4Þ

Thus, according to the values of the pi;k and p0i;k, the set B may

define only a fraction of the Z-module.

For example, in the case of NiZr – and disregarding the

direction z that is common to both twinned crystals – we have

A = ð0; 1; 1; 1; 1Þ, B = ð0; 3; 1; 1; 3Þ and A0 = ð1; 1; 0; 1; 1Þ, B0 =

ð1; 3; 0; 3; 1Þ with a lattice of type C. The set B is thus defined

by

B ¼ fnðAþ BÞ=2þmðA� BÞ=2þ n0ðA0 þ B0Þ=2

þm0ðA0 � B0Þ=2; n;m; n0;m0 2 Zg

or using equation (4) explicitly

B ¼ fð�n0; 2mþ 2m0 � n� n0;�n;�m�m0 þ 2n0;

�m�m0 þ 2nÞg

with n;m; n0;m0 2 Z. In the five-dimensional representation,

this set of points is localized on a four-dimensional hyperplane

perpendicular to the main five-dimensional diagonal

ð1; 1; 1; 1; 1Þ (the sum of the five components is zero whatever

the values of n; n0;m and m0). It has rank 3 because A� B =

A0 � B0, so that dislocations in that framework are char-

acterized by three integer indices only. A general module

dislocation of the five-dimensional description might well not

be in the set B. Such is the case for the hypothetical dislocation

of Burgers vector B = ð1; 0; 0; 0; 0Þ that does not belong to B.

In contrast, the elementary dislocation of Burgers vector B =

ð1; 2; 1; 0; 0Þ belongs to B with n = n0 = 1, mþm0 = 2, leading

thus to B = (1, 2, 1) expressed in the three-dimensional module

B. The two approaches are sketched in Fig. 13.

6. Conclusion

This article is the experimental counterpart of a former one

(Sirindil et al., 2017) based on the idea of testing whether

certain structures can be described in the context of

Z-modules, i.e. in high-dimension spaces, rather than in the

standard framework based on three-dimensional lattices. We

have shown here that the orthorhombic phase NiZr can be

faithfully described in a five-dimensional space with high

internal symmetry generating possible defects at the symmetry

breaking induced by the projection back in the three-

dimensional space. The ultra-high-resolution electron micro-

scopy pictures have shown perfect agreement between

observed and predicted defects. This set of experiments

supports the use of Z-modules in crystallography; this is

indeed an interesting and fruitful unifying concept, even in

direct space, where it is both an elegant formulation and an

efficient tool to predict new possible defects including

interface dislocations in structures with hidden non-

crystallographic symmetries, in a unique mathematical

framework.

APPENDIX A
The low-temperature monoclinic structure

We occasionally observed weak supplemental peaks at the

positions 1/2(1, 1, 1) in the electron diffraction patterns with

alternative strong and weak reflections typical of a slight

deviation from the CrB-type ideal structure; this was

demonstrated several years ago by Bendersky et al. (1996) in
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Figure 13
The bilattice B, a module of rank 3 generated by the quinary twin in NiZr,
is a subset of the pentagonal Z-module. The basic module dislocation has
Burgers vector ð1; 2; 1; 0; 0Þ on the Z-module (in purple) and ð1; 2; 1Þ (in
green) on B. Here, the pentagonal module allows for a finer description of
the possible interface dislocations than the standard three-dimensional
module defining the bilattice.

Figure 14
(a) The monoclinic C1m1 unit cell AM;BM;CM, in black, and the
orthorhombic Cmcm AO;BO;CO, in light blue. (b) Corresponding
diffraction patterns for both structures.



the case of the (Pd,Zr) system which is very similar to (Ni,Zr).

A transformation appears below 473 K towards a monoclinic

variant with space group C1m1 as shown in Fig. 14. The results

of our own crystallographic analysis corroborate and complete

the remarkable analysis of Bendersky et al.. The monoclinic

phase is characterized by the unit-cell parameter AM, BM and

CM deduced from the orthorhombic parameters AO, BO and

CO according to

AM ¼ 2AO

BM ¼ 2CO

CM ¼ �
1
2 ðAO þAOÞ

8<
: or

AO ¼
1
2 AM

BO ¼ �
1
2 AM � 2CM

CO ¼
1
2 BM:

8<
:

In reciprocal space, the relations are given by

a	M ¼
1
2 ða
	
O þ b	OÞ

b	M ¼
c	

O

2

c	M ¼ 2b	O

8<
:

a	O ¼ 2a	M �
c	

M

2

b	O ¼ 2c	M
c	O ¼ 2b	M

8<
:

leading to the following relationships between the indices:

h ¼ H
2

k ¼ H
2 � 2L

l ¼ K
2

8<
:

H ¼ 2h

K ¼ 2l

L ¼ 1
2 ðh� kÞ

8<
: :

The lattice indices are given by the absolute value of the

determinant of the unit-cell relationships:

iCð2AO;2CO;�1=2ðAOþBOÞÞ=CðAO;BO;COÞ
¼ det

2 0 0

0 0 2

1=2 1=2 0

������
������ ¼ 2

leading to the translation orbit decomposition (expressed on

the Cmcm basis):

CðAO;BO;COÞ ¼ fð1j000Þ þ ð1j001Þg � Cð2AO; 2CO;

� 1=2ðAO þ BOÞÞ

and the point group decomposition:

mxmymz ¼ ð1þmx þmy þ 2zÞmz

so that the complete basic coset decomposition for this

transformation is written:

CmcmðAO;BO;COÞ

¼ fð1j000Þ þ ð1j001Þg

� fð1j000Þ þ ðmxj000Þ þ ðmyj00 1
2Þ þ ð2zj00 1

2Þg

� C1m1ð2AO; 2CO;�1=2ðAO þ BOÞÞ

expressed on the Cmcm basis. This shows that, in the mono-

clinic phase, we should observe four types of orientational

variants times two types of translational variants, a total of

eight variants which all share the same reciprocal lattice for

even k. This explains the complexity of planar defects

observed by TEM compared with the relative simplicity of the

diffraction patterns.

Initially described in Cmcm by the Wyckoff positions 4c:

0; y; 1
4 and 0; y; 3

4, for each Ni and Zr atomic species, the

structure in C1m1 is described with the new Wyckoff positions

xM ¼
1

2
ðxO � yOÞ; yM ¼

1

2
zO; zM ¼ �2yO:

Explicitly for the present case xM ¼ �y=2, yM ¼ 1=8,

zM ¼ �2y so that we end up with the crystal description using

the template6 for the two atomic species:

w1 ¼ �xM 0 �zM

w2 ¼ xM �=4 zM

ðw02 ¼ xM ��=4 zMÞ

w4 ¼ �xM 1=2 �zM

where we have translated the origin for C1m1 along the b axis

by 1/8 to select it on the pure mirror perpendicular to the b

axis (the c axis of the Cmcm structure). Here, � is equal to 1 in

the orthorhombic structure and can take any value in the

monoclinic one.
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Figure 15
Ni are in red and Zr in green. In the monoclinic phase on the right, the
atoms located on the glide mirror can move freely out of the mirror plane:
the difference between the two structures consists of moving these atoms
perpendicularly to the mirror.

Figure 16
General coherent twin for structures defined by hexagons generated by
e1, e2 and e3 with je1j = je3j = 1 and je2j = je4j = 	. The angles � and � are
defined as ðe1; e3Þ = 2� and ðe1; e2Þ = �þ �. The structure has the space
group p2 whereas the Z-module is the projection of the four-dimensional
lattice of space group pmm.

6 In our case of the NiZr alloy, the values of xM and zM are the following: xZr =
0.18045, zZr = 0.7218, xNi = 0.04085, zNi = 0.1634 (and, of course, � = 1 for the
ideal Cmcm structure).



The diffraction amplitude Fðh; k; lÞ expressed in the reci-

procal lattice of the monoclinic structure is easily calculated.

Let us put �ðx; zÞ ¼ 2�ðhxþ lzÞ:

Fðh; k; lÞ /
n

exp½�i�ðx; zÞ�½1þ expði�kÞ� þ exp½i�ðx; zÞ�

� exp �i
�

2
�k

	 

þ exp i

�

2
�k

	 
h io
� f1þ exp½i�ðhþ kÞ�g

or

Fðh; k; lÞ ¼ 2
n

exp½�i�ðx; zÞ�½1þ expði�kÞ�

þ 2 exp½i�ðx; zÞ� cos
�

2
�k
o

with hþ k ¼ 2n.

The first term vanishes for odd k and the second one

vanishes for odd k and � ¼ 1 (i.e. in the Cmcm structure).

These extinctions are independent of the value of �ðx; zÞ. This

shows that the monoclinic structure is the derivation of the

CrB-type structure where � 6¼ 1, i.e. where the atoms gener-

ated by w2 and w02 are (slightly) displaced along the y direction

of the monoclinic phase, i.e. the z direction of the CrB-type

structure.

In summary, the case � ¼ 1 generates the diffraction

pattern corresponding to the standard CrB Cmcm structure

whereas � 6¼ 1 generates the diffraction corresponding to the

monoclinic distorted structure with half of the atoms of Ni(Zr)

(slightly) displaced along the z direction of the CrB structure

as shown in Fig. 15.

The most important result with respect to the main purpose

of the present article is twofold:
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Figure 17
Interesting specific cases appear for the CrB-type structure where 	 = 1 if � = �=K, K 2 Zþ. On top, the case K = 8 generates octagonal twins that are
described using a Z-module of rank 4 defined by the four vectors 1, 2, 3 and 4 in the very same way as the pentagonal module (K = 10) of NiZr. The case
of K = 12 leading to dodecagonal twins is also very simple to handle since the corresponding Z-module is also of rank 4. Unit cells are: octagonal A =
ð1; 1; 1; 1Þ, B = ð1; 3; 3; 1Þ; dodecagonal A = ð1; 1; 0; 1Þ, B = ð1; 1; 4; 3Þ [see Hornfeck et al. (2014) Fig. 7 for an illustration of chiral twins of the CrB type
with octagonal and dodecagonal symmetry].



(i) Whatever structure, orthorhombic or monoclinic, is

actually observed in the microscope, there are no differences

in the HREM and HAADF images if observed along the [001]

direction (orthorhombic indexing).

(ii) Whatever the actual value of the parameter � in the

monoclinic phase, the five-dimensional scheme used here

remains perfectly valid.

APPENDIX B
A generalization of coherent mirror twins

The case of the quinary twin generated by a ½1; 1; 0�mirror can

be generalized to many structures outside those of the CrB

type. In fact, this happens each time the structure has the

property of being possibly described as a two-dimensional

tiling of identical hexagonal tiles where the hexagon has two

adjacent sides of equal length as exemplified in Fig. 16 (Bouzy,

private communication). There, the coherent twin is easily

defined using the four-dimensional Z-module generated by

the four vectors e1, e2, e3 and e4, where e3 and e4 are mirrors

of, respectively, e1 and e2. Choosing je1j as the length unit, we

define 	 ¼ je2j, 2� ¼ ðe1; e3Þ and � ¼ ðe1; e2Þ � �. The two-

dimensional unit cell is defined by A ¼ ð1; 0; 1; 0Þ and

B ¼ ð1; 1; 0; 0Þ with space group p2. The projection matrix

(not normalized) into the physical space is thus

bPP� ¼
cos� 	 cos� cos� 	 cos�
� sin � 	 sin � sin � �	 sin �

� �
:

The four-dimensional lattice generating the Z-module has

space group pmm0 with m = f3; 4; 1; 2g and m0 =

f�3;�4;�1;�2g so that the coset decomposition of pmm0

onto p2 with the same lattice gives two variants, i.e. one twin

characterized by the mirror bmm = ðf3; 4; 1; 2gj1000Þ and its

associated translation t decomposes into ti = 1=2ð1; 0; 1; 0Þ =

A=2 and tr = 1=2ð1; 0; 1; 0Þ. The translation t can be expressed

in the unit cell of the transformed variant as t =

f0; 1=½2ð1þ cos 2�Þ�g. Fig. 17 shows, beyond the pentagonal

case, the two special high-symmetry cases of octagonal and

dodecagonal systems, both modules of rank 4, where easy

coherent twins are expected to occur.
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