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Abstract

A model of plasticity controlled by the pure climb motion of dislocations is proposed and compared with the mechanical properties of
icosahedral AlPdMn. This model takes into account the chemical stress due to an out-of-equilibrium average concentration of vacancies,
and the difficult nucleation of jog-pairs on climbing dislocations. It accounts for several unexplained properties of AlPdMn, namely a
high strain-hardening at yield, a steady-state flow stress twice higher than the elastic limit, and two-stage relaxation curves. It also
explains values of the stress–strain rate sensitivity larger than expected a priori, and activation energies larger than the self-diffusion
one. The model may also be applicable to high-temperature deformation of crystals.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Although high-temperature creep by pure climb disloca-
tion motion was proposed 40 years ago by Nabarro [1], this
mechanism has, since then, never received much attention.
One reason for this lack of interest is that plastic deforma-
tion is usually attributed to glide dislocation motion, climb
being restricted to recovery.

There are, however, a few situations where climb has
been shown to be the principal mode of plastic deformation.
For instance, Le Hazif et al. [2] and Edelin and Poirier [3]
showed that hexagonal-close-packed (hcp) magnesium
and beryllium single crystals, strained along their c-axis,
deform by the pure climb motion of c-dislocations. In a sim-
ilar way, the high-temperature creep properties of interme-
tallic alloys and superalloys may also be controlled by pure
climb, according to Epishin and Link [4] and Caillard [5].

As shown by Caillard and Martin [6], available models
of climb are, however, insufficient to account for the exper-
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imentally measured mechanical properties, and corre-
sponding activation parameters, for two main reasons: (i)
the chemical force due to the lack or excess of vacancies,
absorbed or emitted during deformation, is not taken into
account, and (ii) usual low-stress approximations yielding a
climb velocity proportional to effective stress are no more
valid at high stress and/or large strain rates.

The aim of this study is thus to propose a reliable model
of pure climb plasticity, including points (i) and (ii) above,
which could be compared with the few available experi-
mental data. Unfortunately, such a comparison is still
impossible to make in crystals, where the total absence of
glide is difficult to prove unambiguously, and where dislo-
cation densities, chemical forces, internal stresses, and
stress–strain rate dependences, have not all been deter-
mined. For this purpose, icosahedral AlPdMn, which
deforms exclusively by dislocation climb [7–13], at least
above 573 K, is a more convenient model material.

Dislocations and mechanical properties of quasicrystals
have been reviewed recently in Ref. [14]. In spite of their
specific aperiodic structures, these materials contain
dislocations not significantly different from those in crys-
tals [14–16]. In particular, dislocations have well-defined
rights reserved.
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Fig. 2. Exchange of vacancies between dislocation families 1 and 2, under
compression.
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Burgers vectors, which allow one to define unambiguous
glide and climb mechanisms. In fact, the only difference
between dislocations in quasicrystals and crystals is that
the former trail phason walls (on account of the lack of
periodicity) which, in contrast with stacking faults in crys-
tals, can dissolve by a process called ‘‘retiling” or ‘‘phason
dispersion”. Under such conditions, most conclusions
drawn from climb processes in quasicrystals can a priori
be transposed to crystals.

The recent article of Ledig et al. [17], which provides the
most complete set of experimental data on mechanical
properties of AlPdMn, is used throughout this study.
New results from in situ experiments are also presented
to justify some important hypotheses.

2. The different components of stress

The deformation stress, r, can be decomposed into the
effective stress r*, which is involved in the expression of
the dislocation-climb velocity, the chemical stress rch,
which results from over/under average concentrations of
vacancies, the internal stress ri due to long-range elastic
interactions between dislocations, and the phason stress
rph corresponding to the trailing of phason walls by mov-
ing dislocations. These different stresses are discussed and
compared with measurements in the following sections.
They are schematized at different steps of the stress–strain
curve in Fig. 1.

2.1. The chemical stress, rch

TEM observations in AlPdMn deformed in compression
by Mompiou et al. [8] showed that many dislocations have
moved by climb in planes almost perpendicular to the com-
pression axis. These dislocations, denoted ‘‘1” in the
scheme of Fig. 2, have the highest Schmid factor for climb
(SF = 1). Contrast analyses of the phason walls trailed by
these climbing dislocations showed that they absorb vacan-
cies [8]. This results in a decrease of the average vacancy
concentration, c, to below its original concentration at
thermal equilibrium, c0 ¼ exp� U fv

kT . In this expression, Ufv
Fig. 1. Schematic description of the different components of stress at
various stages of deformation: (a) elastic limit, (b) end of strain-hardening,
(c) steady-state.
is the formation energy of vacancies at free surfaces, or
at dislocations. This builds a chemical (or osmotic) stress
which can be expressed as [6]

rch ¼
kT
X

ln
c0

c
; ð1Þ

where X is the average atomic volume in the icosahedral
structure. This stress opposes to the applied one, which re-
sults in a chemical strain-hardening hch ¼ rch

e , where e is the
plastic deformation.

In pure climb compression, the amount of absorbed
vacancies is proportional to the area swept by dislocations,
which can be expressed by

e ¼ c0 � c ð2Þ
The chemical hardening is accordingly:

hch ¼
kT
X

ln c0

c

c0 � c

Just above the elastic limit, where c remains close to c0, it
reduces to

hch ¼
kT
Xc0

ð3Þ

This initial strain-hardening is higher than the elastic shear
modulus, l = 50 GPa. For instance, it amounts to 118 GPa
at 1000 K (with c0 = 7.5 � 10�3 from Ref. [18] and X =
1.5 � 10�29 m3, from Ref. [19]), and to 323 GPa at 800 K
(with c0 = 2.2 � 10�3). Fig. 3 shows that these values are
in a fair agreement with the initial strain-hardening mea-
sured by Ledig et al. [17], although these authors described
it by the occurrence of an unknown stress, rqc. On the
contrary, our conclusion is that the agreement between
theoretical and experimental values of hch confirms the
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Fig. 3. Theoretical and experimental values of strain-hardening at yield.
Experimental data are from Ledig et al. [17].

Fig. 4. Elastic limit and steady-state flow stress as a function of
temperature, from Ledig et al. [17]. Note the ratio of 2 between the two
types of stress.
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existence of the chemical stress expected in a climb-con-
trolled plasticity mechanism.

The same TEM observations [8], confirmed by Ref. [20],
also showed that many dislocations have moved by pure
climb in planes parallel to the compression axis. These dis-
locations, noted ‘‘2” in the scheme of Fig. 2, have a zero
Schmid factor for this kind of motion. They have accord-
ingly moved and multiplied under a different kind of stress,
which can be identified with the chemical force defined
above. Contrast analyses confirmed that they emit vacan-
cies [8], thus tending to compensate for the increase of
the chemical stress, and to decrease accordingly the chem-
ical hardening rate, hch. Eventually, hch decreases to zero
when a steady-state is reached, for which all vacancies
absorbed by the first system are provided by the second
one. This occurs when

q1b1v1 ¼ q2b2v2 ð4Þ
where indexes 1 and 2 refer to dislocation families moving
at the respective velocities v1(r � rch), and v2(rch) (Fig. 2).
The Burgers vector lengths b1 and b2 are average values of
several possible components of six-dimensional Burgers
vectors in the physical space, which play the same role as
usual Burgers vectors in crystals [21]. They can be consid-
ered to be equal (see Appendix). Dislocation densities
are the result of a balance between multiplication and anni-
hilation processes, which depend on the kinetics of motion
under effective and internal stresses, respectively. We show
in the Appendix that provided Eq. (4) is verified, the dislo-
cation densities of the two systems evolve towards the
steady-state values qss1 � qss2. Then, Eq. (4) yields
v1 � v2, which is realized for r � rch � rch, namely:

rch � rss=2 ð5Þ
The stress–strain curve at low deformation, where internal
stresses can be safely neglected, can thus be described as
follows (Fig. 1a and b). The elastic limit, which corre-
sponds to the first movements of ‘‘family 1” dislocations, is

rel ¼ r�1 þ rph ð6Þ
where r�1 is the corresponding effective climb stress. After
the rapid strain-hardening discussed above, the stress
reaches a steady-state value rss, which, according to Eqs.
(5) and (6), and Fig. 1b, can be expressed as

rss ¼ rel þ rch ¼ 2rel or rss ¼ 2ðr�1 þ rphÞ ð7Þ
This equation shows that as soon as the equilibrium be-
tween emission and absorption of vacancies is attained,
the steady-state stress is expected to be twice the elastic lim-
it. The steady-state stress subsequently decreases according
to the strain-softening mechanism specific of quasicrystals,
which will be discussed in Section 2.2.

As predicted by the model, the elastic limit and the
steady-state stress measured by Ledig et al. [17] are in a
ratio of two, between 500 �C and 700 �C (Fig. 4). This
property is difficult to check at higher temperatures, the
accuracy of the measurements being insufficient above
700 �C. It is, however, clearly verified in the experiments
of Brunner et al. [22], performed at 762 �C and 1% defor-
mation, according to their Fig. 1 (rel � 150–200 MPa and
rss � 340 MPa). These results again confirm the validity
of the dislocation-climb model.

It must be noted that the chemical stress is fundamentally
different from the classical internal stress due to the elastic
interaction between dislocations, although they both
appear as a result of strain. In particular, the chemical stress
can recover fairly rapidly upon unloading, as the vacancy
concentration recovers its thermal equilibrium value,
through the forward and backward motions of ‘‘family 2”

and ‘‘family 1” dislocations, respectively. After subsequent
reloading, the same elastic limit rel (increased by the perma-
nent component ri), followed by the same strain-hardening
hch, must be anew observed. In that sense, the real perma-
nent flow stress is rss/2, instead of rss. Geyer et al. [23] men-
tioned that a new elastic limit (called bump in their paper)
actually occurs on re-loading after a stress relaxation test.

2.2. The effective climb stress r*

The dislocation-climb velocity is often considered to

be v ¼ DðvÞ
sd

b
Xr�

kT , where DðvÞsd is the vacancy self-diffusion
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coefficient ðDðvÞsd ¼ a2mD exp� U ðvÞ
sd

kT Þ, mD is Debye frequency, a

is the average interatomic distance, U ðvÞsd is the self-diffusion
energy of vacancies, b is the Burgers vector, and r* is the
effective stress acting on climbing dislocations. However,
this expression is valid only under very restrictive condi-
tions, i.e. a very high jog density on climbing dislocations,
and a low stress [6].

When the stress is high, and/or when the dislocation
velocity is high, the jog density is determined by the rate
of jog-pair nucleation on straight dislocation segments par-
allel to dense atomic rows. This behavior is supported by
the observation of polygonal dislocations with edges paral-
lel to twofold and pseudo-twofold directions, moving vis-
cously in planes perpendicular to their Burgers vectors
(see Ref. [11] and Fig. 5). The velocity of climb is then given
by the model of Hirth and Lothe, originally derived for dis-
location glide in semiconductors [6,12,24–26].

This model describes the nucleation and the extension of
a jog/kink pair along a straight dislocation, with the
assumption that jog/kink motion can be described by a dif-
fusion equation. The threshold position, for which the
attraction between opposite jogs is balanced by the effective
stress, r*, is not attained in a single thermally activated
event. This would indeed require the simultaneous diffusion
of the N vacancies included in the jog-pair, with the high

activation energy NU ðvÞsd þ U ðcÞjp ðr�Þ, where U ðcÞjp ðr�Þ is the

threshold energy of an expanding jog-pair under the effec-
tive stress r*. On the contrary, the threshold position is
attained after a series of elementary diffusion processes.
Among the first-created jog-pairs separated by a single
vacancy, a few ones evolve to a wider configuration embed-
ding two vacancies, and so on, till a very few ones reach the
critical position embedding N vacancies. According to this
theory, the climb velocity can take two different forms (L
being the length of a straight dislocation segment):

v ¼ 2pamD

Xr�

kT
exp�

U ðvÞsd þ 1
2
U ðcÞjp ðr�Þ

kT
ð8aÞ
Fig. 5. The different regimes of climb controlled by nucleation and
propagation of jog-pairs: (a) X� L, (b) X 6 L, and (c) X� L.
for L > X, in the so-called jog-collision regime, and

v ¼ 2pLmD
Xr�

kT
exp�

U ðvÞsd þ U ðcÞjp ðr�Þ
kT

ð8bÞ

for L < X, in the so-called length-dependent regime where
v / L.

The transition length X is the mean-free path of a jog
issued from a jog-pair nucleation,

X ¼ a exp
U ðcÞjp ðr�Þ

2kT

Moving dislocations are curved in the first case (Fig. 5a),
and straight along dense atomic rows in the second one
(Fig. 5c). In metals, the jog-height h is the distance between
adjacent dense atomic rows. The jog-height can, however,
be larger in complex crystals with large cell sizes, where
the dislocation core energy can vary with a periodicity lar-
ger than the interatomic distance. The same remark holds
true for quasicrystals, where the dislocation energy can
reach minimum values in Peierls valleys which are sepa-
rated by various distances in the ratio of s, the golden
mean. The jog-height h is then the average distance be-
tween the deepest valleys.

Whether the dislocation-climb velocity is given by Eqs.
(8a) or (8b) can be determined in in situ experiments (see
Ref. [11] for a complete description of the method).
Fig. 6a shows a polygonal dislocation with edges d1 and
d2 parallel to twofold directions, moving by pure climb in
a fivefold plane, at 740 �C. The straight aspect of disloca-
tion segments seems to indicate that they move according
to the length-dependent regime (Fig. 5c). However,
Fig. 6b shows that there is no proportionality law between
instantaneous velocities and dislocation lengths, in contrast
with similar measurements in semi-conductors [6]. Disloca-
tions accordingly move in the jog-collision regime, but
close to the transition to the length-dependent one
(X 6 L, Fig. 5b). More complete in situ experiments of
the same kind can be found in Ref. [27].

When the temperature decreases, and since the apparent
activation energy U sd þ 1

2
U jpðr�Þ must vary more or less

proportionally to temperature, to keep a constant disloca-
tion velocity (proportionality coefficient ck), the term Ujp

(r*) = 2(ckT � Usd) must decrease, and so must the
mean-free path of jogs, X. This can account for the more
curly dislocation shapes observed after low-temperature
deformation.

At least below 800 �C, the stress dependence of the dis-
location climb velocity is thus:

m ¼ o ln v
o ln r�

¼ 1þ r�

2kT

oU ðcÞjp ðr�Þ
or�

ð9Þ

which considering that jogs interact elastically at their
threshold position [6], can be expressed as

m ¼ 1þ 1

4
ffiffiffiffiffiffi
2p
p lb3

kT

ffiffiffiffiffi
r�

l

r
h
b

� �3=2

ð10Þ
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Fig. 6. In situ experiment in AlPdMn at 740 �C, showing: (a) a dislocation with straight segments d1 and d2 parallel to twofold directions, climbing in a
fivefold plane, and (b) the corresponding instantaneous velocities of d1 and d2, as a function of their lengths.
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This theoretical expression will be compared with experi-
mental data in Section 4.

According to the Orowan law, the flow stress reduction
observed at large strain (work-softening) may result from
an increase of the density of dislocations and/or an increase
of their mobility. Since observations show that the disloca-
tion density has the opposite tendency (i.e. it decreases at
increasing stress), work-softening necessarily results from
an increase of the dislocation mobility [28]. A possible
explanation for this effect, specific to quasicrystals, is the
transposition of the easier kink-pair nucleation proposed
by Takeuchi [26], to an equivalent mechanism of easier
jog-pair nucleation. Another plausible explanation is an
enhancement of the diffusion of vacancies, as a result of
the chemical disorder produced by the storage of phason
defects [29].

Average realistic values of r* deduced from the discus-
sion in Section 4 are displayed in Tables 1 and 2.
Table 1
Determination of the stress-dependence of the climb velocity, m, and jog-heig

T (�C) 762 750
Brunner et al. [22] Ledig et al. [17]

rel (MPa) 150–200 200
r�1 ¼ rel � rph ðMPaÞ 120–170 170
rwh (MPa) 55 25
mwh ¼ r�

1

rwh
2.2–3.1 6.8

h
b 2.1 4.7

Table 2
Determination of the stress-dependence of the climb velocity, m, and jog-heig

T (�C) 762 750
Brunner et al. [22] Ledig et al. [17]

rss (MPa) 340 (UYP) 300
ri (MPa) �40 45
r�1 ¼ rss

2 � ri � rph ðMPaÞ 100 75
rss (MPa) 120 70
mss ¼

2r�
1

rss
1.7 2.1

h
b 1.4 2

The maximum stress has been used instead of the steady-state stress at 500 �C
2.3. The internal stress ri

As in crystals, an internal stress ri develops after a few
percent of deformation. On account of Eq. (5), the
steady-state stress can now be expressed as (Fig. 1c)

rss ¼ 2ðr�1 þ rph þ riÞ ð11Þ
Note that the internal stress and the phason stress are both
involved twice in this expression. The internal stress is gi-
ven by the Taylor law ri ¼ alb

ffiffiffi
q
p

, where a ranges between
0.2 and 0.5, and the dislocation density is either
q = q1 + q2 = 2q1 (case of interpenetrating dislocation
families) or q = q1 = q2 (case of two separated dislocation
families). In contrast with crystals deforming by glide at
low temperature, all dislocations are a priori mobile,
whether they contribute to plastic deformation (family 1)
or to decrease the chemical stress (family 2). This conclu-
sion is supported by post-mortem observations showing
ht, h, from data in the work-hardening stage

700 600 500
Ledig et al. [17] Ledig et al. [17] Ledig et al. [17]

300 650 800
270 630 770
40 60 90
6.7 10.5 8.6
3.8 3.8 2.8

ht, h, from data in the steady-state stage

700 600 500
Ledig et al. [17] Ledig et al. [17] Ledig et al. [17]

500 1000 1600 (rmax)
60 90 70

160 380 700
100 130

3.2 5.8
2.4 2.8

.
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three-dimensional dislocation networks instead of pile-ups
of climbing dislocations against dipoles [32]. In addition,
the density of sessile dipoles is rather low, although they
have been sometimes observed as a result of a difficult anni-
hilation by glide [30,31], and dipole hardening appears to
be negligible because global softening is observed instead
of hardening.

The internal stress tends to recover by dislocation anni-
hilation, either during the course of plastic deformation, on
account of strain-softening, or during annealing [28].
Orders-of-magnitude estimates will be used to derive realis-
tic values of r* in Section 4.

2.4. The phason stress rph

At low temperatures, dislocations trail phason walls of
surface energy c, which, like stacking faults in crystals, cre-
ate a back stress rph = c/bk. This stress is sometimes con-
sidered to be high [34], thus accounting for the high flow
stress at low temperature. Measurements deduced from
the ‘‘dissociation width” of dislocations by Mompiou
et al. [8], however, showed that rph is fairly low, of the
order of 30 MPa, and thus negligible at low temperature.
Such a low value is expected only in case of climb, for
which, contrary to glide [33], the internal tiling remains
coherent behind the dislocation, with no empty space or
overlap in the trace of motion, according to Gratias et al.
[35].

At high-temperature, phason walls vanish rapidly in the
wake of moving dislocations. The length of the phason wall
trailed by a dislocation moving at the velocity v is k = vt,
where t is the time after which the phason wall has disap-
peared by phason dispersion. A dislocation can be consid-
ered to move in the perfect state, namely to be free of any
back stress rph, if k is smaller than one interatomic dis-
tance. At T P 800 �C, this occurs for v < 50 nm s�1,
namely _e 6 10�4 s�1, according to Feuerbacher and Cail-
lard [36]. This shows that almost all dislocation movements
below 800 �C involve the creation of a small element of
phason wall, which costs some energy. All dislocations
are thus subjected to the same back stress rph � 30 MPa,
at least below 800 �C.

3. Relaxation tests and apparent stress–strain rate sensitivity

Relaxation tests in materials deforming by climb must
be analyzed considering the specific properties of the chem-
ical stress discussed in Section 2.1. The relaxation curves
and the corresponding apparent stress–strain rate sensitiv-
ities are described first in the steady-state regime and then
close to the elastic limit.

During a relaxation, the total stress r ¼ r�1 þ ri þ rphþ
rch decreases according to the classical relation

_r ¼ �M _e

where M is the elastic modulus of specimen and machine,
and _e ¼ q1bv1ðr�1Þ.
Assuming a power-law velocity–stress dependence,
v1ðr�1Þ ¼ Ar�m1 , the relaxation law becomes

_r ¼ �Mq1bAr�m1 ð12Þ
The experimental strain-rate sensitivity, rexp, is given by

1

rexp

¼ d ln _e
dr
¼ d

dr
ln� _r

namely

1

rexp

¼ m
d

dr
ln r�1 ¼ m

dr�1
dr

1

r�1
ð13Þ

It depends on the ratio
dr�

1

dr which, assuming that ri remains
constant during the relaxation test, depends on the varia-
tion of the chemical stress rch.

As already discussed in Section 2.1, the effective climb
stress for the second system, r�2, is part of the chemical
stress, according to r�2 ¼ rch � ri � rph (Fig. 1c). It tends
to increase according to

_r�þ2 ¼ hch _e ¼ hchq1bAr�m1

It also tends to decrease as a result of vacancy emission
from the second system. Since this second system has the
same kinetics as the first one, this trend can be expressed as

_r��2 ¼ hchq2bAr�m2

Taking q1 = q2, its total variation is thus:

_r�2 ¼ hchq1bAðr�m1 � r�m2 Þ ð14Þ
3.1. Relaxations in steady-state

The different stages of the relaxation are described
schematically in Fig. 7. Assuming that rch = r/2 at the
beginning of the relaxation, we have r�2 ¼ r�1 (Fig. 1) which,
according to Eq. (14), yields _r�2 ¼ 0. The whole decrease of
stress is thus supported by r�1, whence

dr�
1

dr ¼ 1, and, using
Eq. (13)

1

rss

¼ m
r�1

ð15Þ

This stage extends till r�1 remains close to r�2 (full line over
t < ttrans in Fig. 7).

To analyze the subsequent stages of the relaxation, it is
necessary to determine the relative evolution of r�1 and r�2.
Since the relaxation is entirely supported by r�1, this stress
rapidly decreases to below r�2. Then, Eq. (14) yields
_r�2 < 0, which means that r�2 decreases in turn more and
more rapidly. This transition is represented in dotted lines
in Fig. 7.

The system evolves to a second stage when r�2 decreases
at a constant rate, which, according to Eq. (14), is realized
as soon as r�m1 � r�m2 is constant. Assuming that
r�2 � r�1 � r�1, which is valid at the beginning of the relaxa-
tion, this condition reduces to r�2 � r�1 ¼ constant, which
implies that r�1 and r�2 decrease at the same rate, namely
that _r�2 � _r�1 ¼ 0. Assuming that _r ¼ _r�1 þ _r�2 (i.e. ri �
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Fig. 8. Relaxation curves in the hardening stage (R1 and R2) and in the
steady-state regime (R6), from Ledig et al. [17]. The stress decrement Dr
corresponds to that shown in Fig. 6.

Fig. 7. Schematic description of a relaxation test in the steady-state
regime (see text).
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constant), the latter condition is equivalent to 2 _r�2 � _r ¼ 0,
which, using Eqs. (12) and (14), is verified for

r�1 ¼ r�2 1þ M
2hch

� ��1=m

� r�2 1� M
2mhch

� �

namely

Dr ¼ r�2 � r�1 ¼ r�1
M

2mhch

� �
ð16Þ

In this second relaxation stage (full line over t > ttrans in
Fig. 7), the relation _r�2 ¼ _r�1 implies that _r�1 ¼ _r=2, namely
dr�

1

dr ¼ 1
2
. Using Eq. (13), the apparent strain-rate sensitivity

is accordingly

1

rss

¼ m
2r�1

ð17Þ

namely twice lower than in the first period (compare with
Eq. (15)).

Such a behavior has been actually observed in the exper-
iments of Ledig et al. [17], e.g. in the relaxation R6 at
760 �C shown in Fig. 8. In this case, the decrease of stress
before the transition has the right order of magnitude given
by Eq. (16), namely:

Dr � r�1
6
� 15 to 25 MPa

according to Tables 1 and 2 (see Section 4).

3.2. Relaxations in the hardening stage

At the very beginning of plastic deformation, the chem-
ical stress is still low ðr�2 � 0Þ, and the second system is not
yet activated. Eq. (14) then reduces to _r�2 ¼ hchbAðq1r
�m
1 Þ,

which, using Eq. (12), yields:

_r�1 ¼ _r� _r�2 ¼ �q1bAðM þ hchÞr�m1

dr�1
dr
¼ _r�1

_r
¼ 1þ hch

M

and

1

rwh

¼ m
r�1

1þ hch

M

� �

In this domain, Ledig et al. corrected the apparent strain-
rate sensitivity from the hardening factor 1þ hch

M , whence

1

rðcorrÞ
wh

¼ m
r�1

ð18Þ

as in the first stage of relaxations in the steady-state regime
(Eq. (15)).

The corrected strain-rate sensitivity in the hardening
stage is thus twice the strain-rate sensitivity in the second
part of the relaxation in the steady-state regime (Eq.
(17)). This ratio of two has actually been measured by
Ledig et al. [17], as shown in Fig. 9.

When relaxation tests are performed after some amount
of strain-hardening, the chemical stress r�2 cannot be
neglected anymore. In a first step, as long as r�1 > r�2, the
relaxation takes place as above (Eq. (18)). Then, when r�1
has decreased to below r�2, both stresses relax at the same
rate and Eq. (17) holds. There is thus the same two-steps
relaxation as in Section 3.1, although the transition occurs
after a larger decrease of stress. Such behavior is observed
in the relaxation curve R2 of Fig. 8.
4. The true stress-velocity dependence of climbing

dislocations

The exponent m of the effective stress-velocity depen-
dence can be determined using Eqs. (15), (17), or (18),
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Fig. 9. Experimental values of the strain-rate sensitivity, by Ledig et al.
[17]. Note the ratio of 2 between values measured in the work-hardening
and steady-state stages.

Fig. 10. Interpretation of the experimental values of activation energy
measured by Messerschmidt et al. [38], in the frame of the climb model.
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provided r�1 is known. This has been done using data of
Ledig et al. [17] and Brunner et al. [22]. The effective stress
r�1 can be deduced from Eq. (6), where rph � 30 MPa
(Table 1). This value is a priori fairly relevant, because
rel and rph have been measured with a sufficiently high
degree of accuracy. The effective stress can alternatively
be deduced from Eqs. (7) or (11), where rph is still of the
order of 30 MPa, and ri is the internal stress (Table 2).
The upper limit of ri has been estimated by Ledig et al.
using the Taylor law ri ¼ alb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1 þ q2

p
, with a = 1. The

lower coefficient a = 0.35 has been used here, to obtain a
more reasonable estimate of ri. This determination is less
precise than the first one, on account of the uncertainty
on ri. The values of r�1 deduced from the steady-state stress
are lower than those deduced from the elastic limit, espe-
cially at high-temperature. This can be attributed to
strain-softening and/or to an over-estimation of the inter-
nal stress. The resulting values of m are also lower in Table
2, for the same reasons.

Tables 1 and 2 show that m increases with increasing
stress and decreasing temperature, from 2.4 ± 0.6 at
762 �C to 8 ± 2 at 500–600 �C. Note that the accuracy of
this determination increases with decreasing temperature.

These values of r�1 can now be inserted in Eq. (10), to
obtain an experimental order-of-magnitude of the jog-
height, h. Tables 1 and 2 show that h ranges between
1.4 bk and 4.7 bk, the most likely value h = 3 bk corre-
sponding to h � 1 nm, with bk � 0.3 nm. This corresponds
to a Peierls mechanism (adapted to a climb process) at the
scale of the cluster structure, for which the distance
between Peierls valleys corresponds to the average dis-
tance between cluster rows. Note that Messerschmidt
et al. [37] postulated the same value h � 1 nm, in the case
of a glide mechanism.

Peierls valleys are expected to correspond to minimum
values of the dislocation core energy, the origin of which
is still unknown. Note that the concept of Peierls valleys
in climb is relevant only when h is larger than the distance
between adjacent dense rows, in such a way that several
intermediate dislocation positions can be defined between
them (P. Beauchamps, private communication).

5. Activation energy

According to Eq. (8a), the activation energy of plastic
deformation is expected to be close to the self-diffusion
energy of vacancies U ðvÞsd , at high stresses, and to increase
to U ðvÞsd þ U j, as the stress decreases to zero, Uj being the
energy of an isolated jog. As in ordered alloys, U ðvÞsd should
be related to an effective diffusion coefficient which is a
weight average of the diffusion coefficients of the different
constituents. Since Mn and Pd diffuse much more slowly
than Al, the enthalpy of diffusion should be close to that
of Mn or Pd, namely of the order of 1.7 eV [19].

Experimental values are very scattered, and entropy
terms difficult to estimate. In spite of these difficulties,
activation energies corrected from the variation of the
shear modulus with temperature by Messerschmidt et al.
[38], appear to be in a fair agreement with the above esti-
mates. Indeed, Fig. 10 yields DG � 1:8 eV � U ðvÞsd , at high
stress, and the increase of DG extrapolated to zero stress
corresponds to Uj � 2 eV, a plausible value when com-
pared to the rough estimate given by Friedel [39]
U j � 1

10
lb2h � 2:5 eV

� �
.

6. Discussion and consequences for crystals

The identification of chemical stresses has been possible
because experiments of Ledig et al. have been carried out in
a single-grained material. The same procedure in poly-
grained AlPdMn would certainly yield less clear results,
for two reasons: (i) chemical hardening at yield would be
screened by the variable onset of plasticity of different
grains (J. Bonneville, private communication), and (ii)
grain boundaries may be additional sources or sinks of
vacancies decreasing the chemical stress.

Up to now, climb was considered as a recovery mecha-
nism rather than as a plasticity mechanism. This analysis
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shows that plasticity controlled by pure climb does exist, at
least above 0.65Tm (Tm being the absolute melting temper-
ature), provided the stress is high enough.

In crystals, the same chemical stress and climb process
should be observed as well, except for the absence of pha-
son stress and strain-softening, under specific conditions
making climb competitive with glide. As a matter of fact,
the high stress level necessary to activate fast dislocation-
climb cannot be reached under normal conditions, because
dislocation glide is usually an easier and faster process. As
mentioned in the introduction, strong evidences of various
dislocation families moving by climb and exchanging
vacancies have been obtained when glide is inhibited, e.g.
in hcp beryllium and magnesium strained along their c-
direction, and in superalloys where glide is blocked by
the large c0 precipitates [2–5]. The existence of chemical
forces has been postulated accordingly, but neither verified
experimentally, nor explicitly included into corresponding
models. In addition, several activation parameters mea-
sured in Mg have not been explained satisfactorily by these
models, e.g. the stress dependence of the dislocation veloc-
ity, m, larger than unity, and the activation energy, larger
than the self-diffusion energy [3]. We thus suggest that
our model could be tentatively used to re-analyze these dif-
ferent situations.

7. Conclusions

We have proposed a model which fully accounts for sev-
eral unexplained aspects of the mechanical properties of
icosahedral AlPdMn, measured by Ledig et al. [17]. This
model, which is based on our post-mortem and in situ
TEM observations of pure climb dislocation motion, pro-
vides the first direct evidence of the chemical force induced
by an out-of-equilibrium vacancy concentration. It relies
on the following properties which can be considered as
the signature of pure climb plasticity:

	 a high strain-hardening at yield, due to a strong decrease
of the concentration of vacancies consumed by climbing
dislocations;
	 a steady-state flow stress twice higher than the elastic

limit, which is accounted for by the equilibrium value
of the chemical stress;
	 two-stages relaxation curves defining strain-rate sensitiv-

ities in a ratio of 2, which are a direct consequence of the
complex relaxation of the chemical stress.

The true stress-dependence of the dislocation-climb
velocity, which has been determined accordingly, is differ-
ent from the linear dependence given by classical models
valid at low stress and high temperature. It is, however,
in fair agreement with the model of Hirth and Lothe, which
describes the nucleation of jog pairs on straight dislocation
segments observed in TEM. The best fit is obtained for a
jog-height of about 1 nm, i.e. of the order of the average
distance between cluster rows.
These conclusions may be transposed to crystals
deformed under specific conditions favouring pure climb
deformation.

Appendix

We establish here the relation q1ss = q2ss which has been
used to derive Eq. (5). The dislocation density q1 involves
all Burgers vectors almost parallel to the compression axis
(corresponding Schmid factor close to unity), whereas q2

involves all Burgers vectors almost perpendicular to the
compression axis (corresponding Schmid factor with
respect to the chemical stress close to unity). These disloca-
tions are assumed to have N1 and N2 different Burgers vec-
tors, respectively. With a fivefold compression axis, we
consider N1 = 6 (one Burgers vector along the compression
axis, b = 0.456 nm and five ones along the twofold direc-
tions inclined at 30� from the compression axis,
b = 0.480 nm), and N2 = 5 (the five Burgers vectors with
twofold directions perpendicular to the compression axis,
b = 0.480 nm). These Burgers vectors actually correspond
to those observed in Ref. [8]. Assuming that (i) all Burgers
vectors have the same length, and (ii) all Schmid factors are
equal to unity, each system accounts for a fraction _e=N 1, or
_e=N 2, of the total strain rate _e, which is the same for fam-
ilies 1 and 2 (Eq. (4)).

Dislocations multiply and annihilate until a steady-state
is reached. This evolution is first described by equations
already used by Guyot and Canova [40] and Feuerbacher
et al. [41] (case 1). Since these equations are based on a
glide process, we subsequently use other equations better
adapted to climb (case 2). In each approximation, we con-
sider situations where all dislocation systems evolve either
independently or not.

Case 1: the evolution of dislocation density with time is
often described by the following equation [40,41]:

_q ¼ M
b

_e
ffiffiffi
q
p � Y

b
q_e

The first term describes the athermal storage of disloca-
tions, which depends on their swept area per unit time,
_e=b, and on their mean free traveling distance, determined
by the average dislocation spacing q1/2 [42,43]. The second
term, proportional to the current dislocation density, de-
scribes the annihilation of dislocations by dynamic pro-
cesses. The dimensionless parameter Y/b, where Y is
related to the characteristic annihilation distance, has been
introduced by Kocks [42]. For a glide process, Y has been
shown experimentally to follow a power law, Y ¼ A_e�1=n,
where n is of the order of 5 [43,44].

Independent dislocation systems: if all systems develop in
different areas, we have for the two families:

_qi
1 ¼ M

b
_e

N1

ffiffiffiffiffi
qi

1

p
� A

b
_e

N1

� �1�1
n
qi

1

_qj
2 ¼ M

b
_e

N2

ffiffiffiffiffi
qj

2

q
� A

b
_e

N2

� �1�1
n
qj

2

8>><
>>:
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At the steady-state, the dislocation densities are given by
_qi;j

1;2 ¼ 0, i.e.:

q1ss ¼ N
1�2

n
1

M
A

� �2

_e2=n;

q2ss ¼ N
1�2

n
2

M
A

� �2

_e2=n; and
q1ss

q2ss

¼ N 1

N 2

� �1�2
n

ðA:1Þ

Overlapping dislocation systems: if all dislocation systems
develop in the same area, the dislocation mean free path
is q1/2, whence:

_qi
1 ¼ M

b
_e

N1

ffiffiffi
q
p � A

b
_e

N1

� �1�1
n
qi

1

_qj
2 ¼ M

b
_e

N2

ffiffiffi
q
p � A

b
_e

N2

� �1�1
n
qj

2

8>><
>>:
This yields:

q1ss ¼ N
1�1

n
1

M
A

� � ffiffiffi
q
p

_e1=n;

q2ss ¼ N
1�1

n
2

M
A

� � ffiffiffi
q
p

_e1=n; and
q1ss

q2ss

¼ N 1

N 2

� �1�1
n

ðA:2Þ

Case 2: In pure climb plasticity, there is no dislocation stor-
age, as a result dislocation multiplication is only propor-
tional to _e. The annihilation rate depends on the current
dislocation density q and on the annihilation speed. The
latter is driven by the internal stress (static recovery) and
proportional to rm

int / qm=2. This can be expressed as
_q ¼ B_e� Cq1þm

2 , where B and C are constants.
In the case of N1 and N2 independent families, this

yields:

_qi
1 ¼ B _e

N1
� Cðqi

1Þ
1þm

2

_qj
2 ¼ B _e

N2
� Cðqj

1Þ
1þm

2

(

At the steady-state this leads to

q1ss ¼ N 1

B
C

� � 2
mþ2 _e

N 1

� � 2
mþ2

;

q2ss ¼ N 2

B
C

� � 2
mþ2 _e

N 2

� � 2
mþ2

; and
q1ss

q2ss

¼ N 1

N 2

� � m
mþ2

ðA:3Þ

In the case of overlapping families, we have

_qi
1 ¼ B _e

N1
� Cqi

1q
m=2

_qj
2 ¼ B _e

N2
� Cqi

2q
m=2

(

At the steady-state this yields:

q1ss ¼
B
C

_eq�m=2; q2ss ¼
B
C

_eq�m=2; and
q1ss

q2ss

¼ 1 ðA:4Þ

Considering that N1 � N2, n � 5, and 2 < m < 10, Eqs.
(A.1)–(A.4) yield q1ss � q2ss. Many others calculations
could be made, which would yield similar results.
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