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a b s t r a c t 

We investigate the influence of elastic properties of point defects on dislocation climb under stress and 

irradiation. For this purpose, elastic dipole tensors and diaelastic polarizabilities are evaluated in alu- 

minum for vacancies and self-interstitial atoms in their stable and saddle configurations, using density 

functional theory calculations. These parameters are introduced in an object kinetic Monte-Carlo code 

and a continuous diffusion model to estimate the stress dependence of dislocation climb, using a dipole 

of straight dislocations. We show that both parameters have an influence on absorption of point defects 

under stress, in agreement with previous analytical models. However, the effect of dipole tensor is found 

only 5 times larger than polarizability, whereas models predict a factor up to 30. In addition, includ- 

ing polarizability reverses the stress angular dependence when a uniaxial stress is applied orthogonal to 

the dislocation line, so in general polarizability cannot be ignored for simulations under applied stress. 

Further comparison with analytical models shows that they give a good description of angular depen- 

dence, provided saddle point configuration of point defects is not too anisotropic. For vacancies, which 

are strongly anisotropic in their saddle configuration, models fail to reproduce quantitatively lattice ef- 

fects on stress angular dependence observed in simulations. Calculations show that dislocation climb 

velocity under irradiation is expected to be the highest if the stress is approximately orthogonal to the 

dislocation line, especially along the Burgers vector, and the lowest if the stress is applied close to the 

〈 100 〉 direction with the largest projection on the dislocation line. 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Under irradiation and applied stress, metallic alloys exhibit a 

pecific deformation process known as irradiation creep [1,2] . The 

ssociated strain rate, which may be much larger than the one 

ssociated to thermal creep, is related to anisotropic microstruc- 

ural changes. Among them, anisotropic formation and growth of 

islocation loops, resulting from the agglomeration of point de- 

ects (self-interstitial atoms, vacancies), have been observed [3–

] . These processes have been explained by the reorientation of 

mall clusters under stress [9] and/or the preferred absorption 

f self-interstitial atoms (SIAs) and vacancies by some dislocation 

oops, depending on their orientation with respect to the applied 

tress [10] . Other mechanisms have also been proposed. They are 
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ased on climb-assisted glide of dislocations, whose anisotropic 

haracter may also come from the dependence of climb velocity 

n stress [11] . 

Two main models have been developed to explain the preferen- 

ial climb of some dislocation types under applied stress and irra- 

iation. These two models finely depend on the elastic properties 

f point defects, which couple to the internal and applied strain 

elds and result in preferential absorption of point defects at some 

islocations. They both describe a point defect through its elas- 

ic dipole, a tensor which describes how the point defect energy 

aries in a strain field. The first model, known as stress induced 

referred absorption due to anisotropic diffusion (SIPA-AD) 1 [14–

7] , relies on the anisotropy of dipole tensors of point defects in 
1 In some references it is called SIPA-SAPSE (stress induced preferred absorp- 

ion due to saddle-point shape effect) [12,13] . This name has the clear advantage 

o identify the physical quantity responsible for the anisotropic behavior, since 

nisotropic diffusion (AD) can come from various physical quantities. However, 

https://doi.org/10.1016/j.actamat.2022.118431
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2022.118431&domain=pdf
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heir saddle configuration [18] . Due to this anisotropy and to the 

owering of crystal symmetry by an applied stress, diffusion be- 

omes anisotropic [19,20] . This anisotropic diffusion is responsible 

or different absorption “cross-sections” by dislocations and thus 

or preferred absorption. The second model is the stress induced 

referred absorption due to inhomogeneity interaction (SIPA-I). It 

s also often simply called SIPA, as it was developed first and re- 

ains very popular [8,21–23] . It relies on the dependence of dipole 

ensor on local stress, a phenomenon known as diaelastic polariz- 

bility [24] . 

It is customary to quantify the effect of stress on absorption 

ate of defects by dislocations by calculating absorption efficien- 

ies, which are key quantities in rate theory models. Previous an- 

lytical and numerical calculations have shown that in iron and 

opper, absorption efficiencies under stress exhibit a higher de- 

endence on elastic dipole anisotropy than on polarizability, so 

hat SIPA-AD could be more than one order of magnitude larger 

han SIPA-I [12,14,16] . This estimate relies on dipole tensors calcu- 

ated by interatomic potentials, which can differ substantially from 

ipole tensors evaluated by ab initio methods [25] . Several approx- 

mations are made for the polarizability of the elastic dipole to 

ake analytical calculations tractable: the four-rank tensors char- 

cterizing this polarizability are assumed to be isotropic and iden- 

ical for defects at stable and saddle positions. In addition, it is un- 

lear what consequences approximations made in analytical mod- 

ls may have on the absorption rates of point defects [16] . For 

ll these reasons, it appears important to evaluate more precisely 

he amplitudes of SIPA-AD and SIPA-I, i.e. the role of elastic dipole 

nisotropy and diaelastic polarizabilities on absorption efficiencies 

f point defects by dislocations under stress. 

In the present work, we use two simulation methods to eval- 

ate these absorption efficiencies in aluminum. The first one is 

n object kinetic Monte-Carlo (OKMC) approach, which has al- 

eady been used to determine absorption efficiencies without ap- 

lied stress [26] . The second one is a continuous diffusion model 

CDM) [27] . Both methods take into account point defect proper- 

ies at stable and saddle positions. To obtain a precise value of ab- 

orption efficiencies, dipole and polarizability tensors are extracted 

rom density functional theory (DFT) calculations. Aluminum is 

hosen because it is nearly elastically isotropic, so that isotropic 

lasticity can be used conveniently to predict absorption efficien- 

ies [26] . 

This article is organized as follows. In Section 2 diffusion of 

oint defects under stress is discussed and the existing models 

f absorption efficiency under stress are shortly reviewed. Dipole 

ensors and diaelastic polarizabilities are calculated in Section 3 . 

bsorption efficiencies of point defects by dislocations are deter- 

ined by OKMC and CDM and compared to existing models in 

ection 4 . 

. Diffusion of point defects under stress and existing models 

f point defect absorption efficiency 

.1. Diffusion under stress 

The migration of point defects to dislocations depends on their 

nteraction with the elastic field created by dislocations and the 

pplied stress. A point defect can be adequately described as an 

lastic dipole �i j [28,29] , which depends on the local strain field 

f it is polarizable (summation over repeated indexes is implied): 

i j (ε ) = P i j + αi jkl ε kl , (1) 
IPA-AD seems to be more widely used in the literature, so we keep this name 

ere. 

t

p

T

2

2 
here P i j = �i j (0) is the elastic dipole without any effect of stress, 

i jkl the diaelastic polarizability and ε i j the local strain field at the 

osition of the point defect. The associated interaction energy can 

e expressed as [30] : 

 = −P i j ε i j −
1 

2 

ε i j αi jkl ε kl . (2) 

lastic dipoles and polarizabilities are in general different at stable 

nd saddle positions. In the following, superscript “s” means that 

 quantity is taken at saddle position. 

Dederichs and Schroeder have shown that the point defect flux 

an be written as a function of a renormalized diffusion ten- 

or [20] 

˜ 
 i j (r) = 

1 

4 

D 0 

∑ 

h 

ˆ h i ̂
 h j exp 

(
−E s , h (r) 

k B T 

)
, (3) 

here E s , h (r) is the interaction energy as given by Eq. (2) for a

oint defect initially located at r and performing a jump h with as- 

ociated unit vector ˆ h , D 0 is the diffusion coefficient without stress, 

 B the Boltzmann constant and T the temperature. The strain field 

n the interaction energy is taken at the location of the saddle 

oint, which in the present case is r + h / 2 . The summation is per-

ormed on all nearest neighbors. The stress free diffusion coeffi- 

ient is D 0 = κν0 a 
2 exp (−E m 

0 
/k B T ) , where κ = 1 for a vacancy and 

= 2 / 3 for a 〈 100 〉 -split dumbbell SIA. In this expression, a is the

attice parameter of the fcc matrix, ν0 and E m 

0 the attempt fre- 

uency and migration energy, respectively. 

Using a Taylor expansion to second order in strain of the diffu- 

ion coefficient, Woo has clearly shown that different terms con- 

ribute to stress induced preferential absorption [16] . Even though 

n the present work this expansion is not used, it is useful to re- 

all it to make the link with existing models. Let ε i j be the sum

f an applied strain ε a 
i j 

and an internal strain ε d 
i j 

due to a dislo- 

ation, which is assumed to weakly vary over distance a , so that 

 

d 
i j 
(r + h / 2) ≈ ε d 

i j 
(r) . Inserting (2) into (3) leads to 

 

 i j (r) ≈ D 0 δi j ︸ ︷︷ ︸ 
1 - stress free diffusion 

+ 

1 

4 

D 0 
1 

k B T 

∑ 

h 

ˆ h i ̂
 h j P 

s , h 
kl 

ε d kl (r) ︸ ︷︷ ︸ 
2 - EID, first order 

 

1 

4 

D 0 
1 

k B T 

∑ 

h 

ˆ h i ̂
 h j P 

s , h 
kl 

ε a kl ︸ ︷︷ ︸ 
3 - elastodiffusion, SIPA-AD (Woo) 

 

1 

4 

D 0 
1 

k B T 

∑ 

h 

ˆ h i ̂
 h j ( α

s , h 
klmn ︸ ︷︷ ︸ 

4 - SIPA-I 

+ 

1 

k B T 
P s , h 

kl 
P s , h mn ︸ ︷︷ ︸ 

5 - SIPA-AD (Dederichs) 

) ε a kl ε 
d 
mn (r) 

 

1 

4 

D 0 
1 

k B T 

∑ 

h 

ˆ h i ̂
 h j 

(
1 

2 

αs , h 
klmn 

+ 

1 

2 

1 

k B T 
P s , h 

kl 
P s , h mn 

)
ε d kl (r) ε d mn (r) ︸ ︷︷ ︸ 

6 - EID, second order 

+ 

1 

4 

D 0 
1 

k B T 

∑ 

h 

ˆ h i ̂
 h j 

(
1 

2 

αs , h 
klmn 

+ 

1 

2 

1 

k B T 
P s , h 

kl 
P s , h mn 

)
ε a kl ε 

a 
mn ︸ ︷︷ ︸ 

7 - elastodiffusion, second order 

. (4) 

he first term corresponds to the diffusion tensor in the absence 

f stress. The second term, which is related to the elastic interac- 

ion difference (EID) for SIAs and vacancies, is responsible for the 

islocation bias [31] to first order (second order is the sixth term, 

t is always neglected). The third term is the classical elastodiffu- 

ion term [20] . It has been identified by Woo as the main contribu- 

ion to SIPA [13,16] , called SIPA-AD. The fourth and fifth terms cou- 

le the dislocation and applied strains and thus also lead to SIPA. 

he contribution of polarizability corresponds to SIPA-I effect [21–

3] , whereas the product of dipole tensors is the SIPA-AD effect 
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s initially considered by Dederichs and Schroeder [20] . In numer- 

cal simulations based on dipole tensor anisotropy, both the third 

nd fifth terms are included since the diffusion coefficient is kept 

n its initial form (3) [15] . Finally, the sixth and seventh terms are

econd order terms for EID and elastodiffusion. Although the latter 

an in principle contribute to SIPA, it has been ignored in previous 

tudies based on polarizabilities, which all relied on analytical de- 

elopments. Only the fourth term was considered. However, here 

gain, the second part of this term is present in numerical studies 

sing anisotropic dipole tensors. 

.2. Models of point defect absorption efficiency under stress 

In the framework of rate theory, the effect of stress on point 

efect absorption rate by dislocations is quantified by the so- 

alled “absorption efficiencies”. These quantities relate the absorp- 

ion rate of point defects to their average concentration in the ma- 

rix. They are obtained by solving the diffusion problem around a 

ink, usually at stationary state [32–36] . Analytical expressions of 

bsorption efficiencies can be obtained only with simple geome- 

ries and simplified description of point defect properties. Taking 

nto account the full complexity of Eq. (4) necessarily requires nu- 

erical simulations, as those performed in the present work. 

Heald and Speight have given an expression for the absorption 

fficiency of defects by dislocations under a tensile stress of mag- 

itude σ , if among terms 3 to 7 in Eq. (4) only the fourth one is

aken into account (SIPA-I) [23] . They assume that the polarizabil- 

ty tensor is the same at stable and saddle points and that it is 

sotropic, i.e. 

i jkl = 

(
αK − 2 

3 

αμ
)
δi j δkl + αμ

(
δik δ jl + δil δ jk 

)
, (5) 

here αK and αμ are the bulk and shear polarizabilities [37] . This 

pproximation amounts to considering the defect as an isotropic 

nhomogeneous Eshelby inclusion in the matrix. The dipole tensor 

s also assumed to be the same at stable and saddle points and 

s considered isotropic, i.e. P i j = P δi j . Woo has shown that the ex- 

ression of Heald and Speight can be cast under the following form 

HSW model) [38] : 

 

I (σ) = Z 0 
(

1 + 

	Z I (σ) 

Z 0 

)
, (6) 

ith 

	Z I (σ) 

Z 0 
= 

Z 0 

2 π

δL (σ) 

L 0 
(7) 

 

0 = 

2 π

ln 

(
4 R 

| L 0 | e γ
) (8) 

 

0 = 

P b 

2 π

1 − 2 ν

1 − ν

1 

k B T 
(9) 

δL (σ) 

L 0 
= 

σ

μ

[
(1 − 2 ν) αK 

2(1 + ν) P 

+ 

αμ

3(1 − 2 ν) P 

(
−(1 + ν) + 3 ν(s · l) 2 + 3(s · b) 2 

)] 
(10) 

note that the 2 π factor in Eq. (7) is missing in the expression 

f Woo). Z 0 is the absorption efficiency without applied stress. In 

qs. (8) - (10) , ν is the Poisson’s ratio, μ is the shear modulus, b is

he Burgers vector ( b = | b| ), l is the dislocation line direction, γ is

he Euler’s constant ( γ ≈ 0 . 577 ) and R is the half-distance between

islocations, calculated as R = (πρd ) 
−1 / 2 with ρd the dislocation 

ensity. The uniaxial stress is applied along s , so that σi j = σ s i s j .
3 
qs. (6) to (10) are often given with different notations, consider- 

ng the defect as an Eshelby inhomogenous inclusion. The link be- 

ween the two formalisms is recalled in Appendix A . For the sake 

f completeness, we note that an expression with a similar depen- 

ence on stress orientation, in (s · l) 2 and (s · b) 2 , was obtained by 

olfer and Ashkin [37] . 

With this model, the stress direction leading to the highest ab- 

orption efficiency depends on the sign of αμ/P ( Eq. (10) ). For an

IA in fcc metals, it is known that in its stable position, αμ > 0

nd P > 0 [39] , so the model predicts that SIAs are more absorbed

y a dislocation if the tensile stress is along the Burgers vector. For 

 vacancy, it is assumed in the literature that αμ > 0 [22,23] , but

 < 0 , so the reverse behavior is expected. 

Later, SIPA due to elastodiffusion (SIPA-AD) was investigated an- 

lytically by Skinner and Woo [13] , Woo [16] , and Borodin and 

yazanov [17] . The most general formula was derived by Borodin 

nd Ryazanov. They showed that if only the three first terms in 

q. (4) are retained, and if the deviatoric part of the dipole tensor 

t saddle point is small, the absorption efficiency of a defect can 

e written as 

 

AD (σ) = Z 0 
(

1 + 

	Z AD,0 

Z 0 
+ 

	Z AD,hydro (σ) 

Z 0 
+ 

	Z AD,dev (σ) 

Z 0 

)
. (11) 

ontrary to the SIPA-I model described above, in this model, here- 

fter called B&R model, the defect has different properties at stable 

nd saddle positions. The absorption efficiency Z 0 is still defined by 

qs. (8) and (9) , but P is now related to saddle point properties,

.e. P = P s = Tr (P s ) / 3 . Z 0 thus corresponds to the absorption of an

sotropic defect at saddle point. Saddle point anisotropy can have 

n influence on absorption efficiency even in the absence of ap- 

lied stress [13,15,17,26,40,41] , this is taken into account through 

Z AD , 0 . The effect of stress on absorption efficiency can be de- 

omposed into an hydrostatic term 	Z AD,hydro depending only on 

r (σ) , and a deviatoric term 	Z AD,dev . Only the latter is of inter- 

st here, as we focus on the difference of absorption efficiencies 

or different orientations of applied stress. For a uniaxial stress, it 

eads [17,42] 

	Z AD,dev (σ) 

Z 0 
= − σ

4 μ

P s 

k B T 

×
{ 

d (2) 
[ 
(s · l) 2 − 1 

3 

] 
+ d (3) 

3 ∑ 

p=1 

[ 
(e p · l) 2 (e p · s ) 2 − 1 

9 

] } 

, (12) 

here e p ( p = 1 , 2 , 3 ) are the unit vectors along the crystallo-

raphic axes. Factors d (2) and d (3) are related to the components of 

ipole tensors at saddle point. In an fcc structure, the dipole tensor 

f a defect jumping along [110] is of the form 

 

s = 

( 

P s 
11 

P s 
12 

0 

P s 
12 

P s 
11 

0 

0 0 P s 
33 

) 

. (13) 

e then have d (2) = P s 
12 

/P s and d (3) = (P s 
11 

− P s 
33 

) / (2 P s ) − P s 
12 

/P s . 

It appears from Eq. (12) that the absorption efficiency does not 

epend on the orientation of uniaxial stress with respect to the 

urgers vector, unlike SIPA-I. It is generally accepted that what is 

mportant for SIPA-AD is the orientation of stress with respect to 

he dislocation line direction l, as shown in the simplified model 

f Woo [16] : 

	Z AD,dev (σ) 

Z 0 
= 

3 σ

8 μ

P s 

k B T 

(
1 − P s 1 

P s 

)[ 
(s · l) 2 − 1 

3 

] 
. (14) 

his expression corresponds to Eq. (12) if l = e p for a given p, ex-

ept that P s 
11 

in Eq. (12) is replaced by the eigenvalue P s 
1 

associated 

o the eigenvector along the jump direction (in practice P s 
11 

and 

 

s are very close, since P s = P s + P s and P s � P s ). For vacancies,
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s < 0 and P s 
1 
/P s > 1 [26,43] , so a tensile stress applied along the

islocation line increases the absorption efficiency. For SIAs, P s > 0 

nd P s 
1 
/P s > 1 , so the reverse behavior is expected. We note how-

ver that in the general case ( Eq. (12) ), it is clear that the orien-

ation of stress with respect to crystallographic axes also plays a 

ole. 

Expressions for SIPA-AD and SIPA-I use only some terms in 

q. (4) . In reality, all terms from 3 to 7 contribute to absorp-

ion efficiency modification under stress. As shown by Savino and 

omé [14] , the third term, as a first-order term, should give the 

ighest contribution. However, their results were obtained with 

rude estimates of polarizabilities and values of dipole tensors cal- 

ulated by interatomic potentials. In addition, as shown in the 

revious paragraphs, various approximations underlie the analyt- 

cal derivations. That is why, in the following, we evaluate the 

ipole tensors and polarizabilities for both stable and saddle con- 

gurations by DFT and introduce them into an OKMC code and a 

DM model, which take into account the full complexity of diffu- 

ion under stress. We determine the relative importance of dipole 

nisotropy and polarizability by comparing these calculations to 

alculations without polarizability. The validity of expressions (7) - 

10) and (12) is discussed, based on our simulation results. 

. Point defect properties 

.1. Method 

Point defect properties can be calculated by atomistic simula- 

ions, from the energy difference between two simulation boxes 

ontaining a point defect, one with applied homogeneous deforma- 

ion ε and the other one without deformation. Following Eq. (2) , it 

eads, for a box of volume V [29,44] , 

E(ε ) = 

1 

2 

ε i j C i jkl ε kl V − P i j ε i j −
1 

2 

ε i j αi jkl ε kl . (15) 

he first term corresponds to the homogeneous deformation of 

he perfect crystal. It can be calculated separately with a ded- 

cated simulation of a box without defect and subtracted from 

E to retain only the contribution of the point defect. By fit- 

ing Eq. (15) without bulk contribution on calculations performed 

t different deformation levels, for different deformation types 

shear, isotropic dilatation, etc.), it is possible to extract point de- 

ect dipole and polarizability tensors. 

Another method consists in using the average residual stress on 

he simulation box [29,44] : 

i j (ε ) = 

1 

V 

∂	E 

∂ε i j 

= C i jkl ε kl −
1 

V 

(
P i j + αi jkl ε kl 

)
. (16) 

lastic dipoles are readily obtained from simulations with zero ap- 

lied deformation [45] , after subtracting the spurious stress in the 

erfect simulation box [29] . Polarizabilities can be extracted from a 

inear fit of the stress as a function of the deformation level, after 

ubtraction of the contribution of the perfect crystal. If the dipole 

omponent is also deducted, the quantity 	σi j (ε ) = −αi jkl ε kl /V is 

btained. 

To evaluate point defect properties in aluminum, DFT calcu- 

ations are performed with VASP code [46–49] using the projec- 

or augmented-wave (PAW) method [50,51] . Calculations are per- 

ormed including the s states [Ne]3s 2 3p 

1 . The exchange correla- 

ion energy is evaluated using the Perdew-Burke-Ernzerhof (PBE) 

eneralized gradient approximation (GGA). The plane wave energy 

utoff is set to 400 eV. Brillouin zone integration is performed 

ith a Methfessel-Paxton broadening of 0.4 eV. Supercells with 

n SIA or a vacancy contain 256 ± 1 atoms. With such simula- 

ion cells, a dense shifted Monkhorst-Pack k -point mesh grid of 

 × 8 × 8 points is necessary to obtain converged results, in agree- 
4 
ent with previous results [52] . Each configuration is relaxed us- 

ng the conjugate gradient technique. The climbing image nudged 

lastic band method (CI-NEB) [53] using 7 images is used in or- 

er to find saddle points. A calculation is considered as converged 

hen the forces on each atom are lower than 0.002 eV/ ̊A. 

In the present study, dipole tensors are calculated with the 

tress method ( Eq. (16) ). Simulations with interatomic potentials 

ith different supercell sizes, reported in supplementary material, 

how that the error on dipole tensor components due to the in- 

eraction between the point defect and its periodic images [25] is 

ess than 1% (Fig. S1 and Table S1). Both energy and stress methods 

ere tested to determine polarizabilities. The convergence with 

he number of k -points turned out to be faster with the stress 

ethod, in agreement with previous observations [54] . In addi- 

ion, the stress method requires fewer deformation types to extract 

olarizabilities, since the different stress components are related 

o different combinations of αi jkl coefficients. For these two rea- 

ons the stress method is used. A list of the deformation types, 

ith the corresponding values of −V 	σi j (ε ) = αi jkl ε kl , is given 

n Appendix B . Although the first deformation is not necessary to 

etermine coefficients for cubic and tetragonal symmetries, it is 

alculated in order to check consistency of coefficients calculated 

y different deformations. It also gives an estimate of the error on 

he coefficients, which can roughly be estimated to a few eV. An 

dditional source of error comes from the interaction of the point 

efect with its periodic images [55] . Simulations with interatomic 

otentials show that the error on polarizability tensor components 

ith supercells of 256 atoms is less than 10 %, except one compo- 

ent for which it reaches 17 % (Fig. S2 and Table S1). Calculation 

f polarizabilities at saddle points is computationally demanding, 

ince a NEB calculation must be performed for each deformation 

evel of each deformation type. At least 5 deformation levels are 

sed to perform the fit. 

.2. Results 

Dipole and polarizability tensors are given in Table 1 . Dipole 

ensor values are slightly different from a previous DFT study [26] , 

ue to different DFT settings and in particular denser k -point 

eshes used here. They are in good agreement with recent DFT 

alculations performed on the vacancy [56] . The relaxation vol- 

mes, deduced from the dipole tensor values through 

V 

r = 

Tr P 

3 K 

, (17) 

here K = (C 11 + 2 C 12 ) / 3 is the bulk modulus, are also presented

n Table 1 . Altogether the values agree reasonably well with ex- 

eriments, although the absolute value of the relaxation volume 

f the vacancy in its stable configuration is larger than the ex- 

erimental value measured at 4 K. The tetragonal deviation from 

 cubic dipole tensor for the SIA in its stable configuration is in 

xcellent agreement with the experimental value P 11 − P 22 = 1 . 1 ±
 . 3 eV [57] . 

As can be seen from Eq. (15) , introducing polarizable point de- 

ects in a material leads to a variation of its elastic constants: 

C i jkl = − x 

�
αi jkl , (18) 

here x is the atomic fraction of defects and � the atomic volume. 

his can be written under the more convenient form: 

	C i jkl 

xC i jkl 

= − 1 

�C i jkl 

αi jkl . (19) 

lthough αi jkl has a tetragonal symmetry for SIAs, it is not possible 

o measure all components of the tensor experimentally. Assuming 

hat SIA variants are equally distributed in the material, only data 
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Fig. 1. System simulated containing a dipole of straight dislocations. A tensile stress σ is applied along s , given by the two angles ( θ , ϕ). 
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elated to cubic symmetry can be extracted. Therefore it is possible 

o measure two shear polarizabilities 

∗
44 = 

1 

3 

( α44 + 2 α55 ) (20) 

′∗ = 

1 

3 

(
α11 − α12 

2 

+ 

α22 − α12 

2 

+ 

α22 − α23 

2 

)
(21) 

nd a bulk polarizability 

K = 

1 

3 

(
1 

3 

(α11 + 2 α12 ) + 

2 

3 

(α22 + α12 + α23 ) 
)
. (22) 

rom Eq. (19) it is then possible to compute the influence of de- 

ects on C 44 , C 
′ = (C 11 − C 12 ) / 2 and K. DFT results in Tab. 1 show

hat SIAs contribute much more to the change of elastic constants 

han vacancies, in agreement with experimental results [58] . Va- 

ancies make the material more compliant in compression and 

n shear, while SIAs are compliant in shear and stiff in compres- 

ion. These variations are consistent with trends inferred from 

imple arguments in early works on SIPA-I [23] . The fact that 

IAs are compliant in shear, which is not so intuitive, was proved 

ith analytical models and atomistic calculations [59] . Experimen- 

al measurements also support this result. The variation in the 

wo shear moduli, C 44 and C ′ , was measured in aluminum after 

lectron irradiation at low temperature, where only Frenkel pairs 

re created ( Tab. 1 ). Negative values were obtained, in agreement 

ith present results. We note also that | 	C 44 /xC 44 | > | 	C ′ /xC ′ | ,
hich has been shown to be typical of fcc metals containing 100- 

umbbells [58,59] . Finally and perhaps most importantly, the mag- 

itude of the change of shear moduli due to both vacancies and 

IAs agrees well with experimental results. The change in bulk 

odulus upon introduction of point defects has not been mea- 

ured in aluminum but it is expected to be small, following results 

btained in Cu [60,61] . This is confirmed by our calculations. 

We end this section with a comment on the calculation 

f polarizabilities with interatomic potentials. Early calculations 

ere made with simple pair potentials for stable [59] and sad- 

le [30,62] configurations. The obtained polarizabilities were found 

onsistent with the variation of elastic constants measured experi- 

entally [30,59] . However, later simulations in Cu with more phys- 

cal potentials were shown to produce results at variance with 

xperiments [55] , with values of opposite signs. We encountered 

imilar problems with potentials in aluminum, which highlights 

he need for DFT calculations to evaluate polarizabilities. 

. Effect of stress orientation on point defect absorption by 

islocations 

.1. Methods 

In this part, we evaluate the absorption efficiencies of point 

efects by dislocations in the configuration shown in Fig. 1 . The 

ystem contains two dislocations of opposite Burgers vectors b = 
5 
a/ 2[10 1 ] and line direction l = 1 / 
√ 

6 [ 1 2 1 ] . The vector normal to

he glide plane is n = 1 / 
√ 

3 [111] . The lattice is rotated to align the

islocations along the direction u z of the orthorhombic box and 

he Burgers vectors along u x . The dimension of the system is d

long y and 2 d along x , with d = 100 nm, and the dislocations are

ocated at d/ 2 and 3 d/ 2 along x . This corresponds to a disloca-

ion density ρd = 10 14 m 

−2 , which is typical of steady state dis- 

ocation densities of irradiated microstructures [68] . Along z, the 

ystem consists of a thin slab of 1 nm. Periodic boundary condi- 

ions are used in the three directions. This arrangement of dis- 

ocations was used in a previous study [26] , it ensures a proper 

onvergence of the strain field when the contribution of disloca- 

ions in periodic replica is taken into account [69] , if the strain 

eld is evaluated with isotropic elasticity. It has been checked pre- 

iously that in aluminum, using isotropic elasticity has a negligible 

ffect on absorption efficiencies [26] , so we use this approximation 

ere. This also permits to increase the computational efficiency of 

KMC simulations. The shear modulus is μ = 26 GPa and the Pois- 

on’s ratio is ν = 0 . 35 [26] . Other dislocation arrangements could 

ave been chosen; with such dislocation densities they would give 

lightly different values of absorption efficiencies [35] . However, 

he dependence of absorption efficiencies on stress orientation is 

xpected to be the same. 

To determine absorption efficiencies, vacancies and SIAs are 

onsidered separately. Point defects are uniformly generated in the 

ystem and they are absorbed if they reach one of the cylinders 

f radius r c = 2 b centered on dislocations. The mean field equa- 

ion describing the evolution of point defect average concentration 

¯
 is 

d ̄C 

d t 
= G − Zρd D 0 ̄C , (23) 

here G is the creation rate. The absorption efficiency is deduced 

t steady state from the measurement of C̄ : 

 = 

G 

ρd D 0 ̄C 
. (24) 

A convenient method to determine C̄ is object kinetic Monte- 

arlo [26] . Point defects are introduced at a constant rate in the 

imulation box. They perform atomic jumps until they are ab- 

orbed by one of the dislocations. For a point defect located at r, 

ump frequencies are calculated for each jump h , using the follow- 

ng expression: 

h (r) = ν0 exp 

(
−E m 

0 + E s (r + h / 2) − E e (r) 

k B T 

)
, (25) 

here, as in Section 2 , ν0 and E m 

0 
are the attempt frequency and 

he migration energy without elastic interactions, E e and E s are 

he interaction energies with the local strain field at stable and 

addle points, respectively ( Eq. (2) ). Events (defect jumps and cre- 

tion of point defects) are chosen following the residence time al- 

orithm [70,71] . Transition of SIAs to 〈 110 〉 crowdion configuration, 

ighlighted recently in copper under high local shear strain [72] , is 
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Table 1 

Dipole and polarizability tensors of vacancies and SIAs in their stable and saddle configurations. Entries which are not filled are zero by 

symmetry. Relaxation volumes and change of elastic constants due to defects, deduced from dipole tensors and polarizabilities, respectively, 

are compared to experimental values. Elastic constants determined by DFT are C 11 = 111 . 4 GPa, C 12 = 60 . 7 GPa and C 44 = 33 . 1 GPa. 

vacancy (stable) vacancy (saddle) SIA (stable) SIA (saddle) 

( [100] → [010] ) ([100]) ( [100] → [010] ) 

P 11 (eV) −2 . 49 −2 . 15 18.71 18.57 

P 22 (eV) = P 11 = P 11 17.80 = P 11 

P 33 (eV) = P 11 1.96 = P 22 18.40 

P 12 (eV) −0 . 22 1.45 

α11 (eV) 23 41 −10 4 

α33 (eV) = α11 -3 −13 −8 

α44 (eV) 4 7 103 73 

α55 (eV) = α44 = α44 41 = α44 

α66 (eV) = α44 15 = α55 62 

α36 (eV) 9 0 

α16 (eV) −1 −12 

α45 (eV) 10 25 

α23 (eV) = α12 = α13 −45 = α13 

α13 (eV) = α12 2 = α12 −56 

α12 (eV) 13 19 −60 −71 

	V r / � (sim.) −0 . 31 −0 . 10 2.27 

	V r / �

(exp.) 

−0 . 05 ± 0 . 05 a −0 . 19 d 1 . 9 ± 0 . 2 a,c 

−0 . 36 b 

	C 44 

xC 44 

(sim.) −1 . 2 −18 . 1 

	C 44 

xC 44 

(exp.) e −23 ± 2 

	C ′ 
xC ′ (sim.) −1 . 9 −8 . 2 

	C ′ 
xC ′ (exp.) e −13 ± 2 

	K 

xK 
(sim.) −2 5 

a Measurement at 4 K, Reference [63] . 
b Measurement at 700 K, Reference [64] . 
c Reference [65] . 
d Reference [66] , using formation volume of Ref. [64] . 
e After subtraction of the anharmonic effect due to volume expansion [58] . This value corresponds to the sum of SIA and vacancy con- 

tributions, but it is often considered that vacancy contribution is small [39,58] , which is confirmed by measurements on quenched sam- 

ples [67] . 
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ot considered. More details on OKMC simulations can be found in 

ef. [26] . 

For a given creation rate, it is possible to determine Z by calcu- 

ating the average number of point defects in the simulation box 

t steady state ( Eq. (24) ). The physical time of the simulations is

hosen to ensure the convergence of Z. To provide a confidence in- 

erval, the standard deviation is computed with a block-averaging 

rocedure [73] . On all graphs, the error bars in figures correspond 

o the standard deviation. 

An alternative to OKMC is the continuous diffusion model 

CDM), as described in Ref. [27] . This approach has been shown to 

roduce results in close agreement with reference OKMC simula- 

ions; in particular, it can properly handle the interaction of point 

efects with sinks in their stable and saddle positions, as explicitly 

one in OKMC. The equation to be solved is based on the expres- 

ion of the renormalized diffusion tensor given in Eq. (3) : 

 − ∇ · J = 0 , (26) 

ith 

(r) = − ˜ D (r ) ∇u (r ) . (27) 

n this equation, u is a renormalized concentration, which accounts 

or the concentrations of the different configurations of defects in 

heir stable position (for SIAs) [20,27] . Contrary to OKMC, CDM is 

 local approach, i.e. it amounts to taking E s in Eq. (25) at r in-

tead of r + h / 2 . In practice, for weakly varying elastic fields, this

pproximation is valid. CDM calculations are similar to phase field 

alculations in this context [41] . 

Since it is deterministic in nature, CDM produces results which 

re free of statistical error. However, the finite element solving 
6

f the continuity equation (26) may be quite CPU and memory 

emanding for large three-dimensional systems, as fine meshing 

s required near the sink where concentrations and elastic fields 

ary steeply. Therefore, this method is especially useful for sys- 

ems which are invariant along at least one direction. This is the 

ase of the configuration shown in Fig. 1 , which is invariant along 

. Although absorption efficiencies can be obtained with a two- 

imensional system, we use a thin slab of 1 nm along z and im- 

ose periodic boundary conditions, as in OKMC. 

In the following, simulations are performed at T = 300 K. A uni- 

xial tensile stress of 100 MPa is applied along ( θ, ϕ) ( Fig. 1 ). Al-

hough this value is rather high for aluminum (the yield stress of 

ery large grained pure aluminum is around 10 MPa), it permits 

o obtain a better convergence with OKMC. We have checked, by 

arying the stress amplitude, that at such levels of stress the ab- 

orption efficiency is linear in σ . So the results can easily be ex- 

rapolated to lower values of stress. The effect of elastodiffusion is 

nvestigated with OKMC, which is our reference method. We check 

hat in this case, CDM produces results in agreement with OKMC. 

o determine the effect of polarizability, we subtract the absorp- 

ion efficiencies obtained with and without polarizability. As we 

eed very high accuracy on the absorption efficiencies to perform 

he subtraction, CDM is used in this case. 

.2. Results 

.2.1. SIPA-AD 

As explained above, for SIPA-AD the interaction energy of point 

efects is based solely on elastic dipoles. To evaluate this first 

echanism, we start with OKMC simulations. A 3D map represent- 
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Fig. 2. Difference of absorption efficiency 	Z AD (see text for the definition) of a straight dislocation dipole in relation to the tensile stress orientation, represented on a unit 

sphere by a color scale for SIPA-AD mechanism when only P i j is accounted for in the interaction energy. A tensile stress of 100 MPa is applied, scanning space with a 10 ◦

step. The dislocation is along [ 1 2 1 ] and the Burgers vector is along ±[10 1 ] . The SIA results are presented in (a) and (b) and the vacancy results in (c) and (d). For the sake 

of clarity only one dislocation is schematically represented. 
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ng the influence of tensile stress orientation on absorption effi- 

iency is shown in Fig. 2 . We represent the difference of absorp- 

ion efficiencies for a uniaxial stress of magnitude σ and a hydro- 

tatic stress with the same value of Tr (σ) , called 	Z AD 
i 

for SIAs 

nd 	Z AD 
v for vacancies. This quantity corresponds to 	Z AD,dev in 

he decomposition shown in Eq. (11) . From Fig. 2 we see that va-

ancy absorption is increased if the stress is applied close to a di- 

ection (θ = 30 ◦, ϕ = 90 ◦) . Directions that favor SIA absorption are

ore or less spread on a strip tilted with respect to the plane or- 

hogonal to the line direction. 

To provide a more quantitative representation and facilitate the 

omparison with CDM and B&R model ( Eq. (12) ), 	Z AD is plotted 

n Figs. 3 and 4 as a function of θ , for ϕ = 0 ◦ (in the slip plane

 l, b)) and ϕ = 90 ◦ (in the climb plane ( l, n )). Results obtained with

DM are in very good agreement with OKMC, which validates CDM 

o calculate sink strengths in this configuration. B&R model is able 

o qualitatively reproduce the effect of stress on absorption effi- 

iency. In particular, the dependence on ϕ is correctly taken into 

ccount, unlike the model of Woo which only depends on θ (not 

hown). However, the amplitude of 	Z AD is underestimated with 

&R model, especially for the vacancy with a factor up to 3 at 

= 30 ◦ and ϕ = 90 ◦, where the absorption efficiency is maximum. 

.2.2. SIPA-I 

To determine the effect of polarizability, absorption efficiencies 

btained with dipole tensors only are subtracted from those ob- 

ained with both dipole and polarizability tensors taken into ac- 

ount. These quantities are noted 	Z I . As discussed above, CDM is 

sed for the two calculations to obtain results free from statistical 

rrors. 

Absorption efficiencies of SIAs and vacancies are the highest 

long two different specific directions of applied stress ( Fig. 5 ). 

bsorption of SIAs is more efficient if the stress is applied along 

he Burgers vector, in agreement with early estimates of SIPA- 

 [21,23,38] . The influence of polarizability on vacancy absorption 
7 
nder stress is more surprising. It appears quite similar to the ef- 

ect of dipole tensor anisotropy, with a direction of preferential ab- 

orption along ( θ = 30 ◦, ϕ = 90 ◦). With the existing SIPA-I model,

ne expects a low absorption rate if the stress is applied along the 

urgers vector and a higher absorption rate for other stress orien- 

ations. 

To provide a more quantitative comparison with HSW model 

 Eqs. (7) - (10) ), which assumes that point defects have the same 

sotropic properties at stable and saddle positions, the values of 

ipole tensor P and polarizabilities αμ and αK are deduced from 

roperties of defects in Tab. 1 taken at stable position. P , calcu- 

ated as Tr (P ) / 3 , is equal to 18.10 eV for SIAs and −2 . 49 eV for

acancies. Shear polarizability can be expressed as a Voigt average 

μ = 

3 

5 

α∗
44 + 

2 

5 

α′∗, (28) 

here α∗
44 and α′∗ are given by Eqs. (20) and (21) respectively. 

e have αμ = 45 . 6 eV for SIAs and αμ = 4 . 4 eV for vacancies. Bulk

olarizability, as calculated with Eq. (22) , is αK = −40 . 7 eV for SIAs

nd αK = 16 . 3 eV for vacancies. 

The effect of SIPA-I is usually discussed for a tensile stress or- 

hogonal to the dislocation line ( θ = 90 ◦), either along the Burg- 

rs vector ( ϕ = 0 ◦) or orthogonal to it ( ϕ = 90 ◦) [23] . The variation

f absorption efficiency with ϕ, with θ = 90 ◦, is shown in Figs. 6

nd 7 for SIAs and vacancies, respectively. Some terms are dropped 

n Eq. (6) , which may explain why results are shifted with respect 

o CDM. This shift is not relevant to our purpose. Leaving this as- 

ect aside, the agreement between CDM results and HSW model 

or θ = 90 ◦ is remarkable for the two defects. Results for θ = 30 ◦,

ncluding the direction where 	Z I v is maximum, are also reported 

n these figures. The analytical solution departs appreciably from 

DM, especially for the vacancy. The amplitude of SIPA-I for the 

acancy is lower than the result from CDM by more than a factor 

wo. 
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Fig. 3. Difference of absorption efficiency 	Z AD (see text for the definition) of a straight dislocation dipole for SIAs as a function of θ (angle between tensile stress and 

dislocation line l) for SIPA-AD mechanism, with only P i j accounted for in the interaction energy. Results obtained by OKMC and CDM are compared. The analytical B&R 

model of Eq. (12) is shown in dashed lines. The absorption efficiency is presented for two values of ϕ: ϕ = 0 ◦ , i.e. in a plane containing l and b and ϕ = 90 ◦ , i.e. in a plane 

containing l and n . 

Fig. 4. Difference of absorption efficiency 	Z AD (see text for the definition) of a straight dislocation dipole for vacancies as a function of θ (angle between tensile stress 

and dislocation line l) for SIPA-AD mechanism, with only P i j accounted for in the interaction energy. Results obtained by OKMC and CDM are compared. The analytical B&R 

model of Eq. (12) is shown in dashed lines. The absorption efficiency is presented for two values of ϕ: ϕ = 0 ◦ , i.e. in a plane containing l and b and ϕ = 90 ◦ , i.e. in a plane 

containing l and n . 
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.3. Discussion 

.3.1. SIPA-AD 

The contribution of intrinsic dipole anisotropy at saddle con- 

guration to SIPA (SIPA-AD) has been discussed by several au- 

hors [13,15–17,19,20] . It was shown that the absorption efficiency 

s mostly dependent on the direction of uniaxial stress with re- 

pect to the dislocation line [13,15] . Under stress, the diffusion ten- 

or becomes anisotropic, owing to saddle point anisotropy. A dis- 

ocation orthogonal to the direction of fastest diffusion will cap- 

ure more point defects than a dislocation collinear to it, because 

ts “cross section” for defect absorption is higher (the term “cross- 

ection” is only strictly valid for purely 1D diffusion, i.e. for an in- 

nitely large effect of stress). Directions of fast diffusion depend on 

he values of dipole tensor at saddle configuration. Vacancies dif- 

use preferentially in a plane orthogonal to the applied stress [74] , 

hich explains why vacancy absorption is enhanced when the ten- 
8 
ile direction is collinear to the dislocation line. The behavior of 

IAs is explained with the same reasoning [16] . 

We have seen in Fig. 2 that our simulations and B&R model are 

n qualitative agreement with these conclusions. However, the di- 

ection of maximum absorption of vacancies is shifted by about 

0 ◦ with respect to the line direction in the plane defined by (l, n )

 ϕ = 90 ◦). Likewise, the strip of maximum absorption for SIAs is 

ilted, with a maximum at around θ = 70 ◦ in the plane (l, n ) and

= 90 ◦ in the plane (l, b) ( ϕ = 0 ◦). These discrepancies can be ex-

lained by lattice effects, which are not all taken into account in 

oo’s approach ( Eq. (14) ), unlike B&R model ( Eq. (12) ). 

To explain these results, we consider a uniaxial stress σi j = 

s i s j , with s 1 = sin α cos β , s 2 = sin α sin β , s 3 = cos β the three di-

ection cosines of s in the basis ([100],[010],[001]). We have 

 i j = 

σ (
s i s j (1 + ν) − νδi j 

)
, (29) 
E 
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Fig. 5. Absorption efficiency increment 	Z I of point defects by a straight dislocation dipole in relation to the tensile stress orientation, represented on a unit sphere by a 

color scale, due to polarizability αi jkl (SIPA-I). Values are obtained by CDM. They result from the difference between absorption efficiencies with P i j and αi jkl considered and 

with only P i j included. A tensile stress of 100 MPa is applied, scanning space with a 10 ◦ step. The dislocation is along [ 1 2 1 ] and the Burgers vector is along ±[10 1 ] . The SIA 

results are presented in (a) and (b) and the vacancy results in (c) and (d). 

Fig. 6. Increment of absorption efficiency 	Z I 
i 

due to polarizability of SIAs, as a function of ϕ, for two values of θ ( 30 ◦ and 90 ◦). Results are obtained with CDM and 

compared to HSW model given by Eqs. (7) - (10) . 
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r  
ith E = 2 μ(1 + ν) Young’s modulus. We consider a jump along

110], for which the dipole tensor at saddle position is given by 

q. (13) . Neglecting the polarizability, the saddle point energy 

eads 

 

s = −σ

E 

(
P 11 (1 + ν) sin 

2 α − 2 νP 11 + P 33 (1 + ν) cos 2 α − νP 33 

+ P 12 (1 + ν) sin 

2 α sin 2 β
)
. (30) 

Given the signs of the dipole tensor components of a vacancy 

see Tab. 1 ), it is clear that the energy is minimum for α = 0 ◦, i.e.

or a stress applied along [001]. For the SIA, since P > 0 , we must
12 

9 
ave β = 45 ◦. In addition, with P 11 + P 12 > P 33 the energy is mini-

um for α = 90 ◦. This means the stress must be applied along the 

ump direction to minimize the saddle point energy. 

As already discussed, to obtain the maximum absorption effi- 

iency by a dislocation, one must favor the jumps which are as 

rthogonal as possible to this dislocation. For a dislocation along 

 = [ ̄1 2 ̄1 ] / 
√ 

6 , there are two jumps which are orthogonal to the

islocation line, highlighted in red in Fig. 8 -(a). These jumps are 

avored if the stress is applied along [010]. This configuration cor- 

esponds to θ = 35 ◦, in close agreement with our OKMC and CDM 

esults ( θ ≈ 33 ◦) and B&R results ( θ = 29 ◦). The absorption rate of
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Fig. 7. Increment of absorption efficiency 	Z I v due to polarizability of vacancies, as a function of ϕ, for two values of θ ( 30 ◦ and 90 ◦). Results are obtained with CDM and 

compared to HSW model given by Eqs. (7) - (10) . 

Fig. 8. Orientation of uniaxial stress s leading to maximum absorption of point defects by a dislocation of line direction l = [ ̄1 2 ̄1 ] / 
√ 

6 and Burgers vector b = [ ̄1 01] / 
√ 

2 

( n = [111] / 
√ 

3 ), and associated jumps responsible for this high absorption rate. (a) Absorption of vacancies (b) Absorption of SIAs; here we give the orientation of stress if it 

is applied in the planes defined by (l, b) ( ϕ = 0 ◦) and (l, n ) ( ϕ = 90 ◦). The maximum absorption rate is obtained in this latest case, with four jumps contributing significantly 

to the absorption of SIAs. 
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4

IAs should be large if the stress is applied along the direction 

f the two jumps orthogonal to the line direction, represented in 

reen in Fig. 8 -(b). The jump direction is along b, and it can be

een in Fig. 2 that indeed, this direction is located in the strip of

igh absorption rates. It is actually the direction of highest absorp- 

ion rate in the plane (l, b) ( ϕ = 0 ◦). From Fig. 2 it appears that

aximum absorption rates are obtained in a plane (l, n ) ( ϕ = 90 ◦).

or a stress applied in this plane, the projection of s on the jumps

epresented in red in Fig. 8 -(b) is the highest for θ = 71 ◦; these

our jumps are not orthogonal to the dislocation, but their projec- 

ion on l is small. The fact that four jumps contribute to SIA dif- 

usion enhancement in this case explains why the absorption rate 

s even higher than for s along b. The value of θ found is very

lose to OKMC and CDM results ( θ = 76 ◦, Fig. 3 ) and B&R results

 θ = 76 ◦). The variation of θ from 90 ◦ to 71 ◦ as ϕ varies from 0 ◦ to

0 ◦ explains the tilted strip in Fig. 2 . Finally, we note that in this

iscussion, the strain field of the dislocation has not been consid- 

red. This validates the assumption of Woo to neglect the disloca- 

ion field in the analytical treatment [16] . Fully considering lattice 

ffects as in B&R model appears necessary to obtain a good agree- 

ent with OKMC and CDM. We note that although second order 
t

10 
erms in Eq. (4) (fifth term and second part of seventh term) can 

n principle also contribute to SIPA-AD, they certainly have a very 

mall impact as they are included in OKMC and CDM but not in 

&R model. 

Even though B&R model successfully reproduces lattice effects, 

he magnitude of 	Z AD is significantly different from our calcu- 

ations for both defects. This is especially the case for the va- 

ancy. In the direction of applied stress where the absorption ef- 

ciency is the highest, the discrepancy reaches a factor of around 

. For this direction, the effects of anisotropy of dipole tensor 

t saddle configuration are the highest. In the model developed 

y Borodin and Ryazanov, the deviatoric part of the dipole ten- 

or is assumed to be small compared to the hydrostatic part. 

his is not true for the vacancy, so it is not surprising that the 

odel cannot quantitatively reproduce the values of 	Z AD when 

he dipole anisotropy contributes significantly to the absorption 

fficiency. 

.3.2. SIPA-I 

Contrary to SIPA-AD, the dislocation strain field is an essen- 

ial ingredient in SIPA-I. The fourth term in Eq. (4) , which in- 
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Fig. 9. Difference of absorption efficiency of SIAs 	Z i as a function of ϕ, calculated 

with CDM for θ = 90 ◦ . The reference calculation which is subtracted corresponds to 

a hydrostatic stress with only P i j taken into account. The dashed curve shows the 

evolution of 	Z i if only P i j is taken into account and the solid curve corresponds to 

the case where P i j and αi jkl are considered. 
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uces a coupling between the applied field and the dislocation 

eld, gives rise to preferential diffusion of point defects to some 

islocations. Usually, one considers that SIAs are the main contrib- 

tors to SIPA-I, due to their large polarizability [14,38,75–77] . HSW 

odel ( Eqs. (7) - (10) ) predicts that SIAs will be absorbed prefer-

ntially by dislocations whose Burgers vector is aligned with the 

pplied stress [22,23,38] . 

Our DFT calculations confirm that SIAs are much more polariz- 

ble than vacancies ( Tab. 1 ). Shear polarizabilities of SIAs and va- 

ancies at stable point, which are used in the analytical model, are 

ound to differ by around one order of magnitude. However, the 

ffect of vacancies on SIPA-I is not completely negligible ( Fig. 5 ): 

he amplitude of the effect is only three times smaller than for 

IAs. This is essentially due to the high absorption efficiency of va- 

ancies when the stress is applied in the plane (l, n ) , for θ = 25 ◦,

lose to the direction corresponding to a maximum of absorption 

fficiency for SIPA-AD ( θ = 33 ◦). This behavior is not captured by 

SW model. Additional calculations (not shown) performed with 

DM and using isotropic and identical properties at stable and sad- 

le points led to results in close agreement with HSW model. We 

an conclude that this model is accurate in its framework and that 

he discrepancy observed here is certainly due to lattice effects. 

n the contrary, the agreement between the model and CDM is 

ather satisfactory for SIAs, although some discrepancies appear if 

he stress is not normal to the dislocation line. This shows that 

n general, since polarizabilities induce second order contributions, 

hey should not be considered without taking into account the 

rst order contributions, i.e. of dipole anisotropy. To our knowl- 

dge, our simulations are the first estimations of SIPA-I based 

n full account of first order terms and polarizabilities at saddle 

onfigurations. 

As for SIPA-AD, other terms potentially contributing to SIPA are 

ncluded in CDM but not in the model. The first part of the seventh

erm in Eq. (4) leads to anisotropic diffusion, so to SIPA. However, 

or applied strains of the order of 10 −4 as those considered here, 

his term can be safely neglected. 

.3.3. Relative contributions of SIPA-AD and SIPA-I to dislocation 

limb under stress 

From analytical expressions as (6) and (11) , it has been sug- 

ested that SIPA-AD is up to thirty times larger than SIPA- 

 [12,14,16] . It is interesting to see whether the present calcula- 

ions, with more accurate values of dipole tensors and polarizabil- 

ties, confirm this conclusion. Indeed, considering polarizabilities 

nduces additional complexity in kinetic codes, so it is useful to as- 

ess the relevance of including them. From Figs. 2 and 5 , one sees

hat the amplitude of absorption efficiencies considering intrinsic 

ipole anisotropy only (SIPA-AD) is around five times larger than 

he one due to polarizability (SIPA-I), whatever the defect. How- 

ver, as shown in Fig. 9 , for a stress applied in a plane normal to

he dislocation line, polarizability reverses the directions of favored 

bsorption of SIAs. The reason for this is the low effect of dipole 

nisotropy in this plane, at variance with polarizability. This sug- 

ests that polarizabilities cannot be disregarded for studies under 

tress. 

Including intrinsic dipole anisotropy and polarizability in the 

alculations permits to conclude about the directions of applied 

tress which favor SIA or vacancy absorption. From the present 

esults it can be concluded that if the stress is approximately or- 

hogonal to the dislocation line, and in particular along the Burg- 

rs vector, the net absorption rate of SIAs should be the highest. 

n the contrary, a uniaxial stress applied close the 〈 100 〉 direction 

ith the largest projection on the dislocation line should minimize 

he net absorption rate of SIAs. Since climb velocity under irradia- 

ion is generally driven by an excess of absorbed SIAs due to EID, 
11 
he climb velocity is expected to increase in the first configuration 

nd to decrease in the second one. 

. Conclusion 

In this study we have investigated the effect of an applied uni- 

xial stress on point defect absorption by straight dislocations in 

luminum. Elastic dipoles and diaelastic polarizabilities of vacan- 

ies and SIAs have been calculated by DFT at stable and saddle 

oints. These parameters have been used in an OKMC code and 

 CDM model to evaluate absorption efficiencies under stress. Our 

esults confirm that the amplitude of SIPA-I, due to polarizability, is 

ower than the one of SIPA-AD, due to dipole anisotropy, by a fac- 

or of around five. However, the correct behavior of the absorption 

fficiency in a plane orthogonal to the dislocation line can only be 

btained if polarizability is considered, so neglecting polarizability 

n studies under stress may not be appropriate. 

Simulation results have been compared to analytical expres- 

ions of SIPA-AD and SIPA-I. For SIAs, models are shown to be 

n reasonable agreement with simulations. Vacancies are very 

nisotropic in their saddle configuration, which induces strong lat- 

ice effects on the diffusion under stress. In this case the pre- 

ictions of the models are not very accurate. The expression of 

orodin and Ryazanov (B&R) for SIPA-AD includes lattice effects 

ut it is assumed that defects are weakly anisotropic in their sad- 

le configuration. It correctly predicts a maximum absorption rate 

f vacancies if the stress is applied along the 〈 100 〉 direction with

he largest projection on the dislocation line. However, the ampli- 

ude of SIPA-AD is underestimated by a factor 3. The expression 

or SIPA-I given by Woo (HSW model) relies on a simple isotropic 

escription of defects and is unable to reproduce the angular 

ependence of absorption efficiency, which is similar to that of 

IPA-AD. 

Our results show that dislocation climb velocity under irradi- 

tion is expected to be the highest if the stress is approximately 

rthogonal to the dislocation line, especially along the Burgers vec- 

or, and the lowest if the stress is applied close to the 〈 100 〉 direc-

ion with the largest projection on the dislocation line. The depen- 

ence of these results on the symmetries of point defects in their 

addle configuration makes these conclusions likely transferable to 

ther fcc metals. The methodology used in this work can be ap- 

lied to Frank dislocation loops. It would be interesting to com- 

are the obtained results to experimental measurements of loop 
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rowth rates under stress [7] , to better assess irradiation creep 

echanisms. 
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ppendix A. Modelling point defects as inhomogeneous 

nclusions 

SIPA-I expressions (6) - (10) are more often given with notations 

elated to Eshelby inhomogenous inclusions. In this framework, 

 defect is considered as a spherical inhomogeneity of bulk and 

hear moduli K 

∗ and μ∗, respectively, with a misfit correspond- 

ng to the transformation strain e ∗
i j 

. It is convenient to consider 

n equivalent homogeneous inclusion of transformation strain e T 
i j 

, 

hich depends on e ∗
i j 

and on the local external strain field (sum of 

he dislocation and applied strain fields), as well as on the elastic 

oduli of the inclusion and of the matrix [78] . The elastic dipole 

s related to the equivalent transformation strain through [29] 

 i j = �C i jkl e 
T 
kl , (A.1) 

ith 

 i jkl = 

(
K − 2 

3 

μ
)
δi j δkl + μ

(
δik δ jl + δil δ jk 

)
. (A.2) 

n SIPA-I models, the defect is considered as isotropic, so e T 
kl 

= 

kl e 
T / 3 . We obtain 

 i j = �Ke T δi j = P δi j , (A.3) 
Table B.2 

Structure of polarizability tensors of vacancies and SIAs in

Stable configuration 

Cubic symmetry 

Vacancy 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

α11 α12 α12 0 0 0 

α12 α11 α12 0 0 0 

α12 α12 α11 0 0 0 

0 0 0 α44 0 0 

0 0 0 0 α44 0 

0 0 0 0 0 α44 

⎞
⎟⎟⎟⎟⎟⎠

Tetragonal symmetry 

For [100] configuration 

SIA 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

α11 α12 α12 0 0 0 

α12 α22 α23 0 0 0 

α12 α23 α22 0 0 0 

0 0 0 α44 0 0 

0 0 0 0 α55 0 

0 0 0 0 0 α55 

⎞
⎟⎟⎟⎟⎟⎠

12 
here P is the quantity used in Eqs. (6) - (10) . It is customary to

se the strain within the inclusion in the absence of external field, 

 

0 
i j 

, related to e T 
i j 

by [78] 

 

0 
i j = S i jkl e 

T 
kl , (A.4) 

here S i jkl is the Eshelby tensor for a spherical inclusion: 

 i jkl = 

5 ν − 1 

15(1 − ν) 
δi j δkl + 

4 − 5 ν

15(1 − ν) 

(
δik δ jl + δil δ jk 

)
. (A.5) 

he strain within the inclusion can be written as e 0 
kl 

= δkl e 
0 / 3 , with

 

0 = 

1 + ν

3(1 − ν) 
e T = 

1 + ν

3(1 − ν) 

P 

�K 

. (A.6) 

e note that owing to Eqs. (17) and (A.3) , e T is the normalized

elaxation volume in a finite medium 	V r / �, whereas e 0 is the 

ormalized relaxation volume in an infinite medium 	V ∞ / �, the 

eformation being localized at the position of the point defect [79] . 

By comparing the expressions of the interaction energy given 

y Eshelby [78] and the one obtained from Eqs. (2) and (5) , the

ollowing expressions are obtained: 

K = −K�
3(1 − ν)	K 

3(1 − ν) K + (1 + ν)	K 

(A.7) 

μ = −μ�
15(1 − ν)	μ

15(1 − ν) μ + 2(4 − 5 ν)	μ
, (A.8) 

ith 	K = K 

∗ − K and 	μ = μ∗ − μ. 

ppendix B. Set of deformation types to calculate polarizability 

ensors 

The structure of the polarizability tensors of vacancies and SIAs 

n their stable and saddle configurations depend on their symme- 

ries. They are given in Table B.2 . To determine all coefficients, 

e consider several deformation types ( Tab. B.3 ). Since both ini- 

ial ([100]) and final ([010]) configurations must be relaxed under 

pplied strain in order to calculate the saddle position, the results 

oncerning the final configurations can also be exploited to obtain 

dditional data about coefficients of the polarizability tensor. 

Figures B.10 and B.11 show the variation of energy due to polar- 

zability, called E (2) (see Tab. B.3 ) extracted from DFT simulations 

solid lines) and calculated with the elastic model using polariz- 

bilities deduced from residual stress (in dashed lines). The vari- 

tion of residual stress due to polarizability, −V 	σi j = αi jkl ε kl , is 

lso shown. These two deformations (1 and 3, see Tab. B.3 ) corre- 

pond to dilatation/compression and 〈 100 〉 shear. 
 their stable and saddle configurations. 

Saddle configuration 

Orthorhombic symmetry 

For [100] to [010] jump 
 

 

 

 

 

 

 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

α11 α12 α13 0 0 α16 

α12 α11 α13 0 0 α16 

α13 α13 α33 0 0 α36 

0 0 0 α44 α45 0 

0 0 0 α45 α44 0 

α16 α16 α36 0 0 α66 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

Orthorhombic symmetry 

For [100] to [010] jump 
 

 

 

 

 

 

 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

α11 α12 α13 0 0 α16 

α12 α11 α13 0 0 α16 

α13 α13 α33 0 0 α36 

0 0 0 α44 α45 0 

0 0 0 α45 α44 0 

α16 α16 α36 0 0 α66 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
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Table B.3 

Strain tensors and related variation in energies and dipole tensors due to polarizability. Tetragonal and orthorhombic symmetries refer to polarizability tensors given in 

Table B.2 ([100] orientation for the SIA and [100] to [010] jump respectively), unless specified. 

strain matrix cubic symmetry tetragonal symmetry orthorhombic symmetry 

− 1 
2 
αi jkl ε i j ε kl −V 	σi j = αi jkl ε kl − 1 

2 
αi jkl ε i j ε kl −V 	σi j = αi jkl ε kl − 1 

2 
αi jkl ε i j ε kl −V 	σi j = αi jkl ε kl 

ε 1 = 

⎛ 

⎝ 

ε 0 0 

0 ε 0 

0 0 ε 

⎞ 

⎠ − 3 
2 ( α11 + 2 α12 ) ε 2 −V 	σ11 = 

(α11 + 2 α12 ) ε

− 1 
2 
(α11 + 2 α22 + 

4 α12 + 2 α23 ) ε 2 
− 1 

2 
(2 α11 + 2 α12 + 

α33 + 4 α13 ) ε 2 

ε 2 = 

⎛ 

⎝ 

ε 0 0 

0 0 0 

0 0 0 

⎞ 

⎠ − 1 
2 
α11 ε 2 − 1 

2 
α11 ε 2 

ε 3 = 

⎛ 

⎝ 

0 0 0 

0 0 ε 

0 ε 0 

⎞ 

⎠ −2 α44 ε 2 −V 	σ23 = 2 α44 ε −2 α44 ε 2 

ε 4 = 

⎛ 

⎝ 

0 ε 0 

ε 0 0 

0 0 0 

⎞ 

⎠ Equivalent to ε 3 Equivalent to ε 3 on final configuration −2 α66 ε 2 

(a) On final configuration (SIA oriented along [010]) 

Fig. B.10. Deformation 1 (dilatation/compression): (a) Variation of energy due to 

polarizability, extracted from DFT simulations (symbols with fit in solid lines) and 

calculated with the elastic model using polarizabilities extracted from residual 

stress (dashed lines). (b) Variation of residual stress ( i. e. change in dipole tensors) 

due to polarizability, which is fitted with a linear function to extract polarizabilities. 

Fig. B.11. Deformation 3 ( 〈 100 〉 shear): (a) Variation of energy due to polarizability, 

extracted from DFT simulations (symbols with fit in solid lines) and calculated with 

the elastic model using polarizabilities extracted from residual stress (dashed lines). 

(b) Variation of residual stress ( i. e. change in dipole tensors) due to polarizability, 

which is fitted with a linear function to extract polarizabilities. 

S

f

R

 

 

[

[

[

13 
upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.actamat.2022.118431 . 
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