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Abstract

We discuss here some arguments in favor of climb being the dominant mode of dislocation motion responsible for

the plastic deformation of icosahedral quasicrystals.
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1. Introduction

Dislocations in quasicrystals were theoretically
predicted [1,2] shortly after their discovery [3,4]. It

took however several years before the first trans-

mission electron microscopy (TEM) observations

came out in real icosahedral [5–8] and decagonal

[9,10] phases. A large effort has since then been

devoted to understanding the geometrical proper-

ties of these defects (see for instance [11–13]) and

reformulate the elastic theory in the quasicrystal-
line context [14–18]. On the experimental side,

substantial progress was made in the interpreta-

tion of out-of-constrast conditions of dislocations

[19,20] that lead to the determination of large

number of various Burgers vectors for dislocations

observed in different quasicrystalline materials

[21–27]. The demonstration that dislocations are

responsible for the plastic deformation in icosa-

hedral phases has been done by in situ experiments

[28] on i-AlPdMn. From this and further experi-
ments (see, for instance [29–33]), the idea has

rapidly emerged that dislocations in quasicrystals

essentially move by glide, an hypothesis that was

supported by sophisticated computer simulations

using molecular dynamics [34–36] on simple 2D

and 3D tiling models. General reviews of the re-

search field of dislocations in quasicrystals can be

found in [2,37,38].
The idea that climb could in fact be the pre-

dominant mode in the dislocation motion in

quasicrystals came out more recently from the

concomitant experimental determination [41–44]

of both Burgers vectors and motion planes in as-

cast single grains of i-AlPdMn. Although these

works were essentially performed on genuine dis-

locations induced by the constraints generated
during the elaboration and cooling of the samples,

they indicated that climb should be a key mecha-

nism to deal with in the modeling of dislocations

motion in quasicrystals. It is our main goal to
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show here through several different examples why

climb appears, to our opinion, as the predominant

mechanism of dislocation dynamics in quasicrys-

tals.

2. Quasicrystal dislocation basics

2.1. Geometry

We use the context of perfect quasicrystals in

the sense of the cut and project method. Disloca-

tions (see Fig. 1(a)) can be defined as Volterra

singularities in the very same spirit as for usual

crystals but transposed to the N -dim periodic ob-

ject. The dislocation is said perfect if its N -dim

Burgers vector is a vector of the N -dim hyperlat-

tice K.
Because the 3-dim cut, say Ek, is irrationally

oriented with respect to K, a perfect dislocation

Burgers vector has necessarily a non-zero compo-

nent in the complementary ðN � 3Þ-dim perpen-

dicular space, say E?. Choosing uppercase letters

for defining vectors of the N -dim space and low-

ercase letters for vectors lying in Ek and E?, we

have ~BB ¼~bbk þ~bb? with
H
C
d~UUð~RRÞ ¼ ~BB for any

closed loop C surrounding the dislocation hyper-

line of dimension N � 2. This hyperline eventually

Fig. 1. (a) Example of how to generate a dislocation in an octagonal tiling: a cut along a worm (in gray) in the octagonal tiling

generates a phason fault after translating along~bbk ¼ ð1; 0; 0; 0Þ. (b) There are two basic ways of displacing the tiling after the cut; on

top the phason fault plane is chosen perpendicular to ~bbk, thus allowing a perfect match of the tiles but inducing many matching rule

violations; in the bottom, the same displacement is performed but in a plane parallel to~bbk. This does not allow for a geometric match of

the initial tiles (irrespective of the matching rules). If we consider the worm as defining the motion plane of the dislocation, the former

case corresponds to climb and the latter to glide. (c) A perfect dislocation in an icosahedral structure: thin slab of a F-type structure

seen in 2-fold orientation built with two atomic surfaces (large triacontahedra) located at the even (�) and odd (d) vertices of a

primitive 6D lattice. The Burgers vector is B ¼ ð1; 1; 0; 0; 0; 0Þ. On the top and right sides, two views of this drawing at glancing angles

show the dislocation core. (d) Metaphoric representation of a simple phason field ~uu?ð~rrkÞ in the 2-dim octagonal tiling. Beside the

standard deformation field (not shown), the dislocation creates a phason field that is equivalent to deforming correspondingly the

physical space Ek along E?. As for the elastic field, the phason field extends to infinity. (e) Schematic sketch of a dislocation moving by

climb; the dislocation moves primarily under the action of~bbk; a trailing phason fault is generated that progressively spreads out in the

material by flip propagations depending on the speed of motion. In the case where the propagation speed is fast enough, an analysis of

the leading dislocation line gives ~bbk as Burgers vector with no component in E?. The N -dim nature of the Burgers vector of the

dislocation is recovered by considering the complete object made of the dislocation line plus the phason fault.
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generates the dislocation line in Ek, the ðN � 3Þ
remaining dimensions are perpendicular to Ek, i.e.

they are parallel to E?. Hence, for icosahedral

quasicrystals, where N ¼ 6, dislocation hyperlines
are 4-dim manifolds that decompose into one

dimension in Ek––the actual dislocation line––plus

three dimensions along E?. This geometrical

construct is in agreement with the fact that the

physical properties of the real dislocation should

be independent of the choice of where the physical

space Ek hits
1 the perpendicular space E?. This, in

turn, implies the displacement field ~UUð~RRÞ to be
independent of the perpendicular component of

the running vector ~RR, i.e. ~UUð~RRÞ 	 ~UUð~rrkÞ. The

perpendicular component ~uu?ð~rrkÞ of ~UUð~rrkÞ is a

measure of the local shift of the physical space

along E?, i.e. the phason field associated to the

dislocation.

A convenient way for representing the disloca-

tion phason field is given in Fig. 1(a) where a
dislocation has been created in an octagonal tiling

by removing a set of adjacent tiles along a vertical

row (in grey)––called a worm in the tiling theory

jargon––and translating the tiling along the hori-

zontal common edge of the removed tiles (see Fig.

1(b), top). Although no new tile shapes have been

created, the resulting object contains an extended

defect called a phason fault in the sense that the
matching rules (see Fig. 1(b), top) are violated all

along the defect line (in gray in Fig. 1(b)), where

new tile configurations have appeared that are not

permitted in the perfect tiling. This extended defect

can afterwards spread out more or less homo-

geneously in the tiling by successive flips of the

hexagon configurations to partially recover correct

local allowed configurations almost everywhere
but in the neighborhood of the dislocation. This

set of hexagon flips is equivalent to locally shifting

the tiling along the perpendicular space (Fig. 1(c)),

thus adding a perpendicular component ~bb? to the

initial ~bbk Burgers vector.

The way the phason field extends in the quasi-

crystal is determined by the displacement field

~uu?ð~rrkÞ (see for instance Fig. 1(d)). For a closed

circuit passing away from the dislocation core, the

closure vector~bb? in E? is given by
H
d~UU?ð~rrkÞ ¼~bb?.

This shows that the linear phason density along a
closed loop decreases as the inverse ratio of the

distance from the dislocation core.

2.2. Dislocation motion

As previously said, dislocations are responsible

for the plasticity of quasicrystals, because, as for

ordinary crystals, they can move and interact with

local and external stress fields mainly through their

own elastic deformation field in Ek.

The question has raised to determine their
motion modes according to the usual notions of

glide and climb. A dislocation is said to glide if its

Burgers vector in Ek is in the plane of motion. This

plane is the trace in Ek of a ðN � 1Þ-dim hyper-

plane generated by the dislocation hyperline and

the parallel component ~bbk of the Burgers vector.

On the contrary, a dislocation is said to climb if

the parallel component~bbk of its Burger vector has
a non-zero component outside the plane of mo-

tion. These two modes have clear physical mean-

ing in crystals: glide corresponds to dislocation

propagation with no long distance mass trans-

port––taking advantage of the atomic periodicity

in the crystallographic plane of motion––whereas

climb is achieved by removing or adding matter in

that plane, therefore requiring long distance
atomic diffusion.

The situation is more tricky for quasicrystals.

As the atomic structure of real quasicrystals can be

reasonably well described as a decoration of tem-

plate simple tilings (they are said to be in the same

local derivability class), we observe that the sim-

plest way to move a dislocation in such a tiling is

to propagate a local collapse (or insert) of a worm
of rhombi perpendicularly to the worm plane: this

corresponds to the climb scheme in usual crystals.

The process, examplified in Fig. 1(b) on the top,

generates a phason wall in the motion plane but

preserves the geometrical connections of the tiling.

On the contrary, a shift parallel to the motion

plane (corresponding to glide mode in crystals)

destroys the local tiling by generating new tile
shapes. In the N -dim picture, the first solution

1 Assuming that the hyperlattice K projects in an uniformly

dense set of points in E?, as is the case in practice for

icosahedral quasicrystals.

D. Caillard et al. / Scripta Materialia 49 (2003) 11–17 13



author's personal copy

leads to a locally wavy but continuous Ek manifold

whereas the second solution generates a tear lo-

cally disrupting the Ek manifold (see Fig. 1(b)

bottom).
Hence, a major difference between climb and

glide in quasicrystals is that, irrespective of the

phason field redistribution that is common to both

modes, climb motion can occur with no decohe-

sion of the tiling whereas glide motion generates

severe local damages in the tiling. This makes glide

more suitable for the modeling of microcracks

generation and propagation of microcracks rather
than an easy dislocation motion as is usually the

case in crystals. In both cases, phason recon-

struction is equally required. But for climb, as in

usual crystals, atomic diffusion to long distance is

necessary to carry the excess (or loss) of matter

during the move.

A rough scenario of the mechanisms of dislo-

cation motion at high temperature could be the
following. The dislocations move by climb under

external stresses by reacting first to forces issued

from the parallel component of the Burgers vector.

This leaves a trailing phason fault bounded at its

tail by a phason singularity~bb?. This extended fault

can afterwards spread out around the dislocation

core (see the sketch in Fig. 1(e)) once the disloca-

tion has been immobilized.

3. Imaging dislocations using TEM contrast

The dislocation contrast observed by TEM are

easily understood as for ordinary crystals within

the column approximation. The clue point to no-

tice here is that translating the cut space Ek by
~TT ¼~ttk þ~tt? of the N -dim space results in a phase

shift of the Fourier coefficients V~TT ð~GGÞ ¼
V0ð~GGÞe2ip~GG
~TT ¼ V0ð~GGÞe2ipð~ggk
~ttkþ~gg?
~tt?Þ, where ~GG ¼~ggk þ
~gg? are the wave vectors of the reciprocal N -dim

lattice K�.

Because of the above formula, all usual results

obtained in crystals where the contrasts depend

solely on phase changes in the Fourier terms of the

potential (see for instance [39]) transpose exactly

for quasicrystals as soon as the usual fault and

diffraction vectors are replaced by their N -dim
equivalents. In particular, contrast extinctions for

a planar fault with fault vector ~RR in N -dim are

achieved once all active diffraction vectors ~GG in

N -dim are such that ~GG 
~RR ¼ 0mod1. For a dislo-

cation of Burgers vector ~BB, this condition reduces
to ~GG 
~BB ¼ 0 whatever the components of ~BB in

parallel and perpendicular spaces. These contrast

rules have been established by Wollgarten et al.

[40].

4. Experimental observations of dislocations in

icosahedral quasicrystals

Dislocation contrasts and mode of motion have

been studied by TEM in AlPdMn single grains.

Results of post mortem observations, on as-grown
samples (Section 4.1), on samples deformed at 300

�C under a high confining pressure (Section 4.2)

and of in situ experiments (Section 4.3), reported

in this section are extracted from Refs. [41–44] and

from Mompiou et al. (to be published).

4.1. Perfect dislocations

Perfect dislocations have Burgers vectors that

are translations of the 6-dim lattice. Strong ex-

tinctions for which ~ggk 
~bbk ¼~gg? 
~bb? ¼ 0 yield the

Burgers vector directions in the physical and per-

pendicular spaces. Accordingly, the dislocations

shown in Fig. 2 have Burgers vectors parallel to
2-fold directions out of the plane of motion––

determined as the plane containing the (curved)

line––in Ek, which shows that they have moved by

climb. Weak extinctions are observed for
~ggk 
~bbk ¼ �~gg? 
~bb?. In those cases (see e.g. Fig.

2(c)), the phase shift of the strain field component

compensates exactly that of the phason field. Fig.

2(d) shows that another diffraction vector parallel
to the first one, but s times longer in Ek, yields a

normal contrast. In addition, strong residual

contrasts are observed for large values of
~gg 
 ð~bbk ^~uuÞ, where ~uu is the unit vector parallel to

the dislocation line. Single and double contrasts

are also obtained for ~GG 
~BB ¼ 1 (Fig. 2(a)) and
~GG 
~BB ¼ 2 (Fig. 2(b)) respectively. These observa-

tions allow one to determine the Burgers vectors
directions and lengths without ambiguity.
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4.2. Imperfect dislocations

Moving dislocations trail phason faults when

the temperature is low enough to avoid fast pha-

son dispersion. In their very definition, phason
faults are characterised by a displacement vector
~rr? in E?. This vector can be equivalently written as
~rrk ¼ ~RR�~rr? in the physical space, where ~RR is a

vector of the hyperlattice, thus making them sim-

ilar to stacking faults in crystals. Their contrasts

depending only on the standard phase shift, they

obey the rules established by Gevers [39], leading

to the experimental determination of~rrk. The con-
trasts are symmetrical in bright field (note the

bright outer fringe, arrowed in Fig. 3(a)) and

asymmetrical in dark field (arrows in Fig. 4(b)).

Contrast analyses allow one to determine the

corresponding displacement vector~rrk. For the case
of dislocations, when there is no phason disper-

sion, the dislocation Burgers vectors have no
component in E?, and their contrast depends only

on the scalar product ~ggk 
~bbk. The out-of-contrast

condition ~ggk 
~bbk ¼ 0 is observed simultaneously

for the dislocation (except in the case of strong

residual contrast, as in Section 4.1, see dislocations

1 and 10 in Figs. 3(d) and 4(d)) and for the fault,

and no weak extinction is possible. Although val-

ues of ~ggk 
~bbk are irrational by nature, they are

Fig. 2. Perfect dislocations in an as-grown AlPdMn single grain: (a) single contrast, (b) double contrast, ((c) and (d)) weak extinction

and single contrast for two s-related diffraction vectors.

Fig. 3. Pure climb of dissociated 2-fold dislocations, in a sample deformed at 300 �C under a high confining pressure. Arrows in (a)

underline the symmetrical phason fringe contrast in bright field conditions. Area A is shown in different conditions, with single

contrasts in (b), a double contrast in (c), an extinction with some residual contrast in (d) and a triple contrast in (e).
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usually close to integer values, n, that correspond
to contracts that are single (n ¼ 1, Fig. 3(b), dis-

locations 1 and 10 in Fig. 4(a) and (b)), and double

(n ¼ 2, Fig. 3(c), dislocations 1 and 10 in Fig. 4(c),

dislocation 2 in Fig. 4(e)). The same remark holds

for large angle convergent beam electron diffrac-
tion patterns where the number of splittings is the

closest integer to ~ggk 
~bbk. The complete analysis

shows that dislocations have 2-fold (Fig. 3), 5-fold

(dislocations 1 and 10 in Fig. 4) or 3-fold (dislo-

cation 2 in Fig. 4) Burgers vectors, all out of the

plane of motion This, again provides evidence for

a climb process. In Fig. 4, the Burgers vector

½1=0; 0=1; 0=0� of dislocations 1 and 10 is not issued
from a translation of the 6-dim F-lattice but from

a translation of the primitive P-lattice: dislocations

1 and 10 are thus superpartial dislocations sepa-

rated by an antiphase boundary (APB) ribbon.

Fig. 4(a) shows that the APB viewed in dark field

using a superstructure diffraction vector exhibits,

as expected, a symmetrical p-type fringe contrast

(see arrows).

4.3. In situ experiments

In situ observations have been carried out on

samples heated at 700 �C, where the thermome-
chanical stresses are sufficient to induce dislocation

motion. Fig. 5(a,b) shows two dislocations moving

viscously in a 3-fold plane. They exhibit polygonal

shapes along two 2-fold directions. A contrast

analysis after cooling has shown that their Burgers

vector has a component in the physical space along

the 3-fold direction perpendicular to the plane of
motion: this corresponds to a pure climb mecha-

nism. The same phenomenon is observed on Fig.

Fig. 4. Climb of imperfect 5-fold ð1� 10Þ and 3-fold ð2Þ dislocations in a 5-fold plane, in a sample deformed at 300 �C under a high

pressure. (a) p-contrast of the APB between dislocations 1 and 10 and in the wake of dislocation 2, imaged in dark field with a su-

perstructure diffraction vector. (b) Normal asymmetrical contrast in dark field for a usual reflection, shown for comparison. (c) Double

contrast of dislocations 1 and 10. (d,e) Dislocations 1 and 10 out of contrast with strong (d) and no (e) residual contrasts.

Fig. 5. In situ experiment showing: (a,b) 3-fold dislocations

moving by pure climb at 700 �C; (c,d) a dislocation noted d,
climbing in a 2-fold plane, and trailing over the length k a

rapidly dispersing phason fault at 720 �C.
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5(c,d) where a dislocation noted d climbs in a

2-fold plane. It appears fuzzy because of its high

velocity. It trails two straight traces at the sample

surfaces, noted t1 and t2, which slowly dissolve
with time. A dark fringe is also visible between the

traces, over the distance k, to the dislocation. It is

interpreted as a phason fault which disappears

within 0.4 s by fast phason dispersion.

5. Conclusion

Although both glide and climb motions are
theoretically possible in quasicrystals, geometrical

and experimental evidences have been proposed

here for privileging climb as the dominant motion

mode in the plasticity of icosahedral quasicrystals.

Glide motion should be considered as an appealing

mechanism for inducing and propagating micro-

cracks in the brittle regime of deformation. If

climb is confirmed as the main motion mode, the
phenomenological models so far proposed for the

plastic deformation of quasicrystal would deserve

profound physical revisions.

References

[1] Lubensky TC, Ramaswamy S, Toner J. Phys Rev B

1986;33:7715–9.

[2] Socolar JES, Lubensky TC, Steinhardt PJ. Phys Rev B

1986;34:3345–60.

[3] Shechtman D, Blech I, Gratias D, Cahn JW. Phys Rev Lett

1984;53:1951–4.

[4] Shechtman D, Blech I. Met Trans A 1985;16:1005–12.

[5] Dai M. Phil Mag Lett 1992;66(5):235–40.

[6] Feng J, Dai M, Wang R, Zou H. J Phys-Condens Matter

1992;4(47):9247–54.

[7] Wollgarten M, Zhang Z, Urban K. Phil Mag Lett

1992;65(1):1–6.

[8] Yu D, Staiger W, Kleman M. Phil Mag Lett

1992;65(4):189–94.

[9] Zhang Z, Zhuang Y. Phil Mag Lett 1992;65(4):203–9.

[10] Zhuang Y, Zhang Z, Williams D. J Non-Cryst Solids

1993;153:119–22.

[11] Ovidko I. Mater Sci Eng A––Struct Mater 1993;163(1):67–

72.

[12] Kleman M. J Phys Condens Matter 1996;8(49):10263–77.

[13] Gutkin M, Ovidko I. Phys Solid State 1997;39(11):1791–5.

[14] Ding D, Wang R, Yang W, Hu C. J Phys-Condens Matter

1995;7(28):5423–36.

[15] Ding D, Wang R, Yang W, Hu C, Qin Y. Phil Mag Lett

1995;72(5):353–9.

[16] Ding D, Qin Y, Wang R, Hu C, Yang W. Acta Phys Sin-

Overseas Ed 1995;4(11):816–24.

[17] Yao D, Wang R, Ding D, Hu C. Phys Lett A 1997;225(1–

3):127–33.

[18] Hu C, Wang R, Ding D. Rep Progr Phys 2000;63(1):1–39.

[19] Urban K, Wollgarten M, Wittmann R. Phys Scr T

1993;49A:360–3.

[20] Urban K, Wollgarten M, Gratias D, Zhang Z. Phase

Transit 1993;44(1–3):187–94.

[21] Dai M. Phil Mag A 1993;67(3):789–96.

[22] Feng J, Wang R, Dai M. J Mater Res 1995;10(11):2742–8.

[23] Wang R, Dai M. Phys Rev B––Condens Matter

1993;47(22):15326–9.

[24] Yan Y, Wang R. J Phys––Condens Matter

1993;5(14):L195–200.

[25] Wollgarten M, Urban K. Phil Mag Lett 1993;68(5):273–7.

[26] Yan Y, Wang R. Phil Mag A 1993;68(5):1033–8.

[27] Shield J, Kramer M. Scr Mater 1996;35(8):913–8.

[28] Wollgarten M, Bartsch M, Messerschmidt U, Feuerbacher

M, Rosenfeld R, Beyss M, Urban K. Phil Mag Lett

1995;71(2):99–105.

[29] Feuerbacher M, Metzmacher C, Wollgarten M, Urban K,

Baufeld B, Bartsch M, et al. Mater Sci Eng A––Struct

Mater 1997;226:943–9.

[30] Yang W, Feuerbacher M, Tamura N, Ding D, Wang R,

Urban K. Phil Mag A 1998;77(6):1481–97.

[31] Schall P, Feuerbacher M, Bartsch M, Messerschmidt U,

Urban K. Phil Mag Lett 1999;79(10):785–96.

[32] Schaaf GD, Mikulla R, Roth J, Trebin HR. Mater Sci Eng

A 2000;294:799–803.

[33] Wang RH, Yang WG, Gui JN, Urban K. Mater Sci Eng A

2000;294:742–7.

[34] Trebin H, Mikulla R, Roth J. J Non-Cryst Solids

1993;153:272–5.

[35] Mikulla R, Gumbsch P, Trebin H. Phil Mag Lett

1998;78(5):369–76.

[36] Fradkin MA. Mater Sci Eng A 2000;294:795–8.

[37] Edagawa K. Mater Sci Eng A 2001;309:528–38.

[38] Caillard D. In: Belin-Ferr�ee E, Berger C, Quiquandon M,

Sadoc A, editors. Quasicrystals current topics. Singapore:

World Scientific; 2000. p. 387–411.

[39] Gevers R. In: Jouffrey B, editor. M�eethodes et Techniques

Nouvelles d�Observation en M�eetallurgie Physique. Paris:

SFME; 1972. p. 155.

[40] Wollgarten M, Gratias D, Zhang Z, Urban K. Phil Mag A

1991;64:819–33.

[41] Caillard D, Vanderschaeve G, Bresson L, Gratias D. In:

Dubois J, Thiel P, Tsai A, Urban K, editors. Quasicrystals,

vol. 553: MRS Symposium Proceedings. 1999. p. 301–6.

[42] Caillard D, Vanderschaeve G, Bresson L, Gratias D. Phil

Mag A 2000;80(1):237–53.

[43] Caillard D, Morniroli JP, Vanderschaeve G, Bresson L,

Gratias D. Eur Phys J AP 2002;20:3–8.

[44] Caillard D, Roucau C, Bresson L, Gratias D. Acta Mater

2002;50:4499–509.

D. Caillard et al. / Scripta Materialia 49 (2003) 11–17 17


	Dislocation climb in icosahedral quasicrystals
	Introduction
	Quasicrystal dislocation basics
	Geometry
	Dislocation motion

	Imaging dislocations using TEM contrast
	Experimental observations of dislocations in icosahedral quasicrystals
	Perfect dislocations
	Imperfect dislocations
	In situ experiments

	Conclusion
	References


